Line 1: | Line 1: | ||
== Homework 6 collaboration area == | == Homework 6 collaboration area == | ||
− | <math>\mathcal{L}</math> | + | Here is something to get you started: |
+ | |||
+ | <math>\mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt</math> | ||
+ | |||
+ | <math>\mathcal{L}[f'(t)]= sF(s)-f(0)</math> | ||
+ | |||
+ | p. 226: 1. | ||
+ | |||
+ | <math>\mathcal{L}[t^2-2t]= \frac{2}{s^3}-2\frac{1}{s^2}</math> | ||
+ | |||
[[2010 MA 527 Bell|Back to the MA 527 start page]] | [[2010 MA 527 Bell|Back to the MA 527 start page]] |
Revision as of 07:39, 5 October 2010
Homework 6 collaboration area
Here is something to get you started:
$ \mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt $
$ \mathcal{L}[f'(t)]= sF(s)-f(0) $
p. 226: 1.
$ \mathcal{L}[t^2-2t]= \frac{2}{s^3}-2\frac{1}{s^2} $