(New page: Category:2010 Fall ECE 438 Boutin ---- == Solution to Q3 of Week 7 Quiz Pool == ---- <math>\begin{align} \text{(a)} \quad & y[n]=e^{j\frac{2\pi}{N}n}x[n], \;\;\; n=0,...,N-1 \\ & X_N...)
 
Line 57: Line 57:
 
Credit: Prof. Charles Bouman
 
Credit: Prof. Charles Bouman
  
Back to [[ECE438_Week6_Quiz|Lab Week 6 Quiz Pool]]
+
Back to [[ECE438_Week7_Quiz|Lab Week 7 Quiz Pool]]
  
 
Back to [[ECE438_Lab_Fall_2010|ECE 438 Fall 2010 Lab Wiki Page]]
 
Back to [[ECE438_Lab_Fall_2010|ECE 438 Fall 2010 Lab Wiki Page]]
  
 
Back to [[2010_Fall_ECE_438_Boutin|ECE 438 Fall 2010]]
 
Back to [[2010_Fall_ECE_438_Boutin|ECE 438 Fall 2010]]

Revision as of 20:40, 3 October 2010



Solution to Q3 of Week 7 Quiz Pool


$ \begin{align} \text{(a)} \quad & y[n]=e^{j\frac{2\pi}{N}n}x[n], \;\;\; n=0,...,N-1 \\ & X_N[k]=\sum_{n=0}^{N-1}x[n]e^{-j\frac{2\pi}{N}kn} \\ \end{align}\,\! $

$ \begin{align} Y_N[k] &= \sum_{n=0}^{N-1}e^{j\frac{2\pi}{N}n}x[n]e^{-j\frac{2\pi}{N}kn}, \;\;\; k=0,...,N-1 \\ &= \sum_{n=0}^{N-1}x[n]e^{-j\frac{2\pi}{N}(k-1)n} \\ &= X_N[k-1] \\ \end{align}\,\! $

$ \begin{align} \text{(b)} \quad & y[n]=\left\{\begin{array}{ll}x[N-1], & n=0,\\ x[n-1], & n=1,...,N-1\end{array} \right.\\ \end{align}\,\! $

$ \begin{align} Y_N[k] &= x[N-1] + \sum_{n=1}^{N-1}x[n-1]e^{-j\frac{2\pi}{N}kn}, \;\;\; \text{Let } m=n-1 \\ &= x[N-1] + \sum_{m=0}^{N-2}x[m]e^{-j\frac{2\pi}{N}k(m+1)} \\ &= x[N-1] + e^{-j\frac{2\pi}{N}k}\sum_{m=0}^{N-2}x[m]e^{-j\frac{2\pi}{N}km} \\ &= x[N-1] + e^{-j\frac{2\pi}{N}k}\sum_{m=0}^{N-1}x[m]e^{-j\frac{2\pi}{N}km} - e^{-j\frac{2\pi}{N}k}x[N-1]e^{-j\frac{2\pi}{N}k(N-1)} \\ &= x[N-1](1-e^{-j2\pi k}) + e^{-j\frac{2\pi}{N}k}\sum_{m=0}^{N-1}x[m]e^{-j\frac{2\pi}{N}km}, \;\;\; ( e^{-j2\pi k} = 1, \; \forall \; \text{integer} \; k ) \\ &= e^{-j\frac{2\pi}{N}k}\sum_{m=0}^{N-1}x[m]e^{-j\frac{2\pi}{N}km} \\ &= e^{-j\frac{2\pi}{N}k} X_N[k], \;\;\; k=0,...,N-1 \\ \end{align}\,\! $


$ \text{(c)} \quad y[n]=\left\{\begin{array}{ll}x[n/2], & n \text{ is even},\\ 0, & n \text{ is odd},\end{array} \right. n=0,...,2N-1 $

$ \begin{align} Y_{2N}[k] &= \sum_{n=0, n\text{ even}}^{2N-1}x\left[\frac{n}{2}\right]e^{-j\frac{2\pi}{N}kn}, \;\;\; \text{Let } n=2m \\ &= \sum_{m=0}^{N-1}x[m]e^{-j\frac{2\pi}{N}k2m} \\ &= X_N[2k], \;\;\; k=0,...,2N-1 \\ \end{align}\,\! $


$ \text{(d)} \quad y[n]=x[2n], \;\;\; n=0,...,\frac{N}{2}-1, \;\; N\text{ even.} $

$ \begin{align} Y_{N/2}[k] &= \sum_{n=0}^{\frac{N}{2}-1}x[2n]e^{-j\frac{2\pi}{N/2}kn} = \sum_{n=0, n\text{ even}}^{N-1}x[n]e^{-j\frac{2\pi}{N}kn} \\ &= \sum_{n=0}^{N-1} \frac{1}{2}\left(1+(-1)^n\right)x[n]e^{-j\frac{2\pi}{N}kn} \\ &= \frac{1}{2}\sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn} + \frac{1}{2}\sum_{n=0}^{N-1} (-1)^n x[n]e^{-j\frac{2\pi}{N}kn} \\ &= \frac{1}{2}\sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn} + \frac{1}{2}\sum_{n=0}^{N-1} e^{-j\frac{2\pi}{N}\left(\frac{N}{2}\right)n} x[n]e^{-j\frac{2\pi}{N}kn}, \;\;\; (e^{j\pi n}=(-1)^n) \\ &= \frac{1}{2}X_N[k] + \frac{1}{2}X_N[K-\frac{N}{2}], \;\;\; k=0,...,\frac{N}{2}-1 \\ \end{align}\,\! $


Credit: Prof. Charles Bouman

Back to Lab Week 7 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett