m
m
Line 1: Line 1:
 
 
=2010_Fall_ECE_438_Boutin/ECE438Mid1FormulaSheet_Work_wrk=
 
=2010_Fall_ECE_438_Boutin/ECE438Mid1FormulaSheet_Work_wrk=
  
 +
*Fourier series of a continuous-time signal x(t) periodic with period T
 +
*Fourier series coefficients of a continuous-time signal x(t) periodic with period T
  
 
+
:<math>x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt}</math>  <math>a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt</math>
Put your content here . . .
+
 
+
  
  
 +
:<math>\ F(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt                  </math> <math>\ f(t) = \int_{-\infty}^{\infty} F(f)\ e^{j 2 \pi f t}\,df </math>
  
 
[[ 2010 Fall ECE 438 Boutin/ECE438Mid1FormulaSheet Work|Back to 2010 Fall ECE 438 Boutin/ECE438Mid1FormulaSheet Work]]
 
[[ 2010 Fall ECE 438 Boutin/ECE438Mid1FormulaSheet Work|Back to 2010 Fall ECE 438 Boutin/ECE438Mid1FormulaSheet Work]]

Revision as of 04:52, 30 September 2010

2010_Fall_ECE_438_Boutin/ECE438Mid1FormulaSheet_Work_wrk

  • Fourier series of a continuous-time signal x(t) periodic with period T
  • Fourier series coefficients of a continuous-time signal x(t) periodic with period T
$ x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt} $ $ a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt $


$ \ F(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt $ $ \ f(t) = \int_{-\infty}^{\infty} F(f)\ e^{j 2 \pi f t}\,df $

Back to 2010 Fall ECE 438 Boutin/ECE438Mid1FormulaSheet Work

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010