Line 23: Line 23:
 
& Y(e^{jw}) = X(e^{j2w}) = e^{-j2w}(1) \;\; \text{for} \;\; w \in (-\pi,\pi) \\
 
& Y(e^{jw}) = X(e^{j2w}) = e^{-j2w}(1) \;\; \text{for} \;\; w \in (-\pi,\pi) \\
 
& Z(e^{jw}) = Y(e^{jw}) \times 2\text{rect}\Big(\frac{w}{\pi}\Big) = e^{-j2w} \bigg( 2\text{rect}\Big(\frac{w}{\pi}\Big) \bigg) \;\; \text{for} \;\; w \in (-\pi,\pi) \\
 
& Z(e^{jw}) = Y(e^{jw}) \times 2\text{rect}\Big(\frac{w}{\pi}\Big) = e^{-j2w} \bigg( 2\text{rect}\Big(\frac{w}{\pi}\Big) \bigg) \;\; \text{for} \;\; w \in (-\pi,\pi) \\
& z[n] = 2\frac{\text{sin}\big(\frac{\pi}{2}(n-2)\big)}{\pi n} \\
+
& z[n] = 2\frac{\text{sin}\big(\frac{\pi}{2}(n-2)\big)}{\pi(n-2)} \\
 
\end{align}
 
\end{align}
 
\,\!</math>
 
\,\!</math>

Latest revision as of 09:21, 28 September 2010



Solution to Q5 of Week 6 Quiz Pool


Upsample.jpg

$ \begin{align} \text{(a)} \quad & x[n] = \delta[n] \\ & X(e^{jw}) = 1 \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{j2w}) = 1 \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Z(e^{jw}) = Y(e^{jw}) \times 2\text{rect}\Big(\frac{w}{\pi}\Big) = 2\text{rect}\Big(\frac{w}{\pi}\Big) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & z[n] = 2\frac{\text{sin}\big(\frac{\pi}{2}n\big)}{\pi n} \\ \end{align} \,\! $

$ \begin{align} \text{(b)} \quad & x[n] = \delta[n-1] \\ & X(e^{jw}) = e^{-jw}(1) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{j2w}) = e^{-j2w}(1) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Z(e^{jw}) = Y(e^{jw}) \times 2\text{rect}\Big(\frac{w}{\pi}\Big) = e^{-j2w} \bigg( 2\text{rect}\Big(\frac{w}{\pi}\Big) \bigg) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & z[n] = 2\frac{\text{sin}\big(\frac{\pi}{2}(n-2)\big)}{\pi(n-2)} \\ \end{align} \,\! $

Note that, since it is upsampled by a factor of 2, $ z[n] $ is shifted 2 to the right compared to $ z[n] $ of (a), even though the input $ x[n] $ is shifted 1 to the right compared to the input $ x[n] $ of (a).

$ \begin{align} \text{(c)} \quad & x[n] = 1 \\ & X(e^{jw}) = 2\pi\delta(w) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{j2w}) = 2\pi\delta(2w) = \pi\delta(w) \;\; \text{for} \;\; w \in (-\pi,\pi), \; \text{since} \; k\delta(kw)=\delta(w), \; \forall \; k\neq0 \\ & Z(e^{jw}) = Y(e^{jw}) \times 2\text{rect}\Big(\frac{w}{\pi}\Big) = \pi\delta(w) \bigg( 2\text{rect}\Big(\frac{w}{\pi}\Big) \bigg) = 2\pi\delta(w) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & z[n] = 1 \\ \end{align} \,\! $

$ \begin{align} \text{(d)} \quad & x[n] = \text{cos}\big(\frac{\pi}{4}n\big) \\ & X(e^{jw}) = \pi \Big[ \delta \big( w - \frac{\pi}{4} \big) + \delta \big( w + \frac{\pi}{4} \big) \Big] \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{j2w}) = \pi \Big[ \delta \big( 2w - \frac{\pi}{4} \big) + \delta \big( 2w + \frac{\pi}{4} \big) \Big] \\ & \quad\quad\quad = \pi \Big[ \delta \big( 2 (w - \frac{\pi}{8}) \big) + \delta \big( 2 (w + \frac{\pi}{8}) \big) \Big] = \frac{\pi}{2} \Big[ \delta \big( w - \frac{\pi}{8} \big) + \delta \big( w + \frac{\pi}{8} \big) \Big] \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & \quad\quad\quad\quad\quad \text{since} \; k\delta(kw)=\delta(w), \; \forall \; k\neq0 \\ & Z(e^{jw}) = Y(e^{jw}) \times 2\text{rect}\Big(\frac{w}{\pi}\Big) = \frac{\pi}{2} \Big[ \delta \big( w - \frac{\pi}{8} \big) + \delta \big( w + \frac{\pi}{8} \big) \Big] \bigg( 2\text{rect}\Big(\frac{w}{\pi}\Big) \bigg) \\ & \quad\quad\quad = \pi \Big[ \delta \big( w - \frac{\pi}{8} \big) + \delta \big( w + \frac{\pi}{8} \big) \Big] \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & z[n] = \text{cos}\big(\frac{\pi}{8}n\big) \\ \end{align} \,\! $


Credit: Prof. Charles Bouman

Back to Lab Week 6 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang