Line 1: Line 1:
 
[[Category:2010 Fall ECE 438 Boutin]]
 
[[Category:2010 Fall ECE 438 Boutin]]
 
+
----
 
== Solution to Q4 of Week 5 Quiz Pool ==
 
== Solution to Q4 of Week 5 Quiz Pool ==
 
----
 
----

Latest revision as of 15:42, 19 September 2010


Solution to Q4 of Week 5 Quiz Pool


From the definition, we know that

$ H(e^{jw}) = \frac{e^{jw}-j}{e^{jw}-2} \,\! $

$ \text{For } w_1, \; |H(e^{j w_1})| = \bigg|\frac{e^{j\frac{\pi}{2}}-j}{e^{j\frac{\pi}{2}}-2}\bigg| = 0, \;\; \text{ since } e^{j\frac{\pi}{2}}=j. \,\! $

$ \text{For } w_2, \; \text{ since } e^{-j\frac{\pi}{2}}=-j, \; H(e^{j w_2}) = \frac{e^{-j\frac{\pi}{2}}-j}{e^{-j\frac{\pi}{2}}-2} = \frac{-j-j}{-j-2} = \frac{2j}{2+j}. \,\! $

Therefore,

$ |H(e^{j w_2})| = \bigg|\frac{2j}{2+j}\bigg| = \frac{\sqrt{0^2+2^2}}{\sqrt{2^2+1^2}} = \frac{2}{\sqrt{5}}. \,\! $




Back to Lab Week 5 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett