(New page: {| | align="left" style="padding-left: 0em;" | Parseval's property |} <math> \mathcal{X}(\omega)=\mathcal{X}(2\pi f) \ </math> <div align="left" style="padding-left: 0em;"> <math> \begin{...)
 
 
Line 1: Line 1:
{|
+
=How to obtain the Parseval's property in terms of f in hertz (from the formula in terms of <math>\omega</math>) =
| align="left" style="padding-left: 0em;" | Parseval's property
+
 
|}
+
To obtain X(f), use the substitution
 +
 
 +
<math>\omega= 2 \pi f </math>.
 +
 
 +
More specifically
 +
 
 
<math> \mathcal{X}(\omega)=\mathcal{X}(2\pi f) \ </math>
 
<math> \mathcal{X}(\omega)=\mathcal{X}(2\pi f) \ </math>
 +
 
<div align="left" style="padding-left: 0em;">
 
<div align="left" style="padding-left: 0em;">
 
<math>
 
<math>
Line 12: Line 18:
 
</math>
 
</math>
 
</div>
 
</div>
 +
 
<math>Since\ X(\alpha)=\mathcal{X}(2\pi \alpha) </math>
 
<math>Since\ X(\alpha)=\mathcal{X}(2\pi \alpha) </math>
 +
 +
----
 +
[[ECE438_HW1_Solution|Back to Table]]

Latest revision as of 11:18, 15 September 2010

How to obtain the Parseval's property in terms of f in hertz (from the formula in terms of $ \omega $)

To obtain X(f), use the substitution

$ \omega= 2 \pi f $.

More specifically

$ \mathcal{X}(\omega)=\mathcal{X}(2\pi f) \ $

$ \begin{align} \int_{-\infty}^{\infty} |x(t)|^2 dt &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{X}(2\pi f)|^2 d2\pi f \\ &= \int_{-\infty}^{\infty} |\mathcal{X}(2\pi f)|^2 df \\ &= \int_{-\infty}^{\infty} |X(f)|^2 df \end{align} $

$ Since\ X(\alpha)=\mathcal{X}(2\pi \alpha) $


Back to Table

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva