(New page: {| | align="left" style="padding-left: 0em;" | time reversal property |- | <math> \omega=2\pi f \ </math> |- | <math> \mathcal{X}(-\omega)=\mathcal{X}(-2\pi f)=X(-f) \ </math> |- | <math>S...)
 
 
Line 1: Line 1:
{|
+
=How to obtain the time reversal property in terms of f in hertz (from the formula in terms of <math>\omega</math>) =
| align="left" style="padding-left: 0em;" | time reversal property
+
 
|-
+
To obtain X(f), use the substitution
| <math> \omega=2\pi f \ </math>
+
 
|-
+
<math>\omega= 2 \pi f </math>.
| <math> \mathcal{X}(-\omega)=\mathcal{X}(-2\pi f)=X(-f) \ </math>
+
 
|-
+
More specifically
| <math>Since\ X(\alpha)=\mathcal{X}(2\pi \alpha) \ </math>
+
 
|}
+
<math> \mathcal{X}(-\omega)=\mathcal{X}(-2\pi f)=X(-f) \ </math>
 +
 
 +
<math>Since\ X(\alpha)=\mathcal{X}(2\pi \alpha) \ </math>
 +
 
 +
----
 +
[[ECE438_HW1_Solution|Back to Table]]

Latest revision as of 11:16, 15 September 2010

How to obtain the time reversal property in terms of f in hertz (from the formula in terms of $ \omega $)

To obtain X(f), use the substitution

$ \omega= 2 \pi f $.

More specifically

$ \mathcal{X}(-\omega)=\mathcal{X}(-2\pi f)=X(-f) \ $

$ Since\ X(\alpha)=\mathcal{X}(2\pi \alpha) \ $


Back to Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett