(New page: {| | align="left" style="padding-left: 0em;" | multiplication property |- | <math> \mathcal{U}(\omega)=\mathcal{X}(\omega)\mathcal{Y}(\omega) \ </math> |- | <math> U(f)=X(f)Y(f) \ </math>...) |
|||
Line 1: | Line 1: | ||
{| | {| | ||
− | | align="left" style="padding-left: 0em;" | | + | | align="left" style="padding-left: 0em;" | convolution property |
|- | |- | ||
| <math> \mathcal{U}(\omega)=\mathcal{X}(\omega)\mathcal{Y}(\omega) \ </math> | | <math> \mathcal{U}(\omega)=\mathcal{X}(\omega)\mathcal{Y}(\omega) \ </math> |
Revision as of 19:32, 9 September 2010
convolution property |
$ \mathcal{U}(\omega)=\mathcal{X}(\omega)\mathcal{Y}(\omega) \ $ |
$ U(f)=X(f)Y(f) \ $ |
$ \begin{align} U(f) &= \mathcal{U}(2\pi f) \\ &=\mathcal{X}(2\pi f)\mathcal{Y}(2\pi f) \\ &= X(f)Y(f) \end{align} $
$ Since\ X(\alpha)=\mathcal{X}(2\pi \alpha),Y(\alpha)=\mathcal{Y}(2\pi \alpha) $