(New page: {| | align="left" style="padding-left: 0em;" | CTFT of a cosine |- | <math> X(f)=\mathcal{X}(2\pi f)=\pi \left[\delta (2\pi f- \omega_0) + \delta (2\pi f+ \omega_0)\right]=\frac{1}{2} \l...)
 
Line 1: Line 1:
{|
+
CTFT of a cosine  
| align="left" style="padding-left: 0em;" | CTFT of a cosine  
+
 
|-
+
<math>
| <math> X(f)=\mathcal{X}(2\pi f)=\pi \left[\delta (2\pi f- \omega_0) + \delta (2\pi f+ \omega_0)\right]=\frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right] \ </math>  
+
\begin{align}
|-
+
X(f) &=\mathcal{X}(2\pi f) \\
| <math>Since\ k\delta (kt)=\delta (t),\forall k\ne 0</math>
+
&=\pi \left[\delta (2\pi f- \omega_0) + \delta (2\pi f+ \omega_0)\right] \\
|}
+
&=\frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right]
 +
\end{align}
 +
</math>
 +
 
 +
<math>Since\ k\delta (kt)=\delta (t),\forall k\ne 0</math>

Revision as of 10:19, 15 September 2010

CTFT of a cosine

$ \begin{align} X(f) &=\mathcal{X}(2\pi f) \\ &=\pi \left[\delta (2\pi f- \omega_0) + \delta (2\pi f+ \omega_0)\right] \\ &=\frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right] \end{align} $

$ Since\ k\delta (kt)=\delta (t),\forall k\ne 0 $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett