Line 2: Line 2:
 
| align="left" style="padding-left: 0em;" | CTFT of a complex exponential
 
| align="left" style="padding-left: 0em;" | CTFT of a complex exponential
 
|-
 
|-
|<math>x(t)=e^{i\omega_0 t}</math>
+
| <math>a.\text{ } x(t)=e^{i\omega_0 t}</math>
 
|-
 
|-
|<math>X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0)</math>
+
| <math>X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0)</math>
 
|-
 
|-
|<math>Since\text{ } k\delta (kt)=\delta (t),\forall k\ne 0</math>
+
| <math>Since\text{ } k\delta (kt)=\delta (t),\forall k\ne 0</math>
 +
|-
 +
| <math>X(f)=\delta (f-\frac{\omega_0}{2\pi})</math>
 +
|-
 +
| <math>b.\text{ } x(t)=e^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math>
 +
|-
 +
| <math>X(f)= \mathcal{X}(2\pi f)=\frac{1}{a+i2\pi f}</math>
 +
|-
 +
| <math>c.\text{ } x(t)=te^{-at}u(t)\ </math>, where <math>a\in {\mathbb R}, a>0 </math>
 +
|-
 +
| <math>X(f)= \mathcal{X}(2\pi f)=\left( \frac{1}{a+i2\pi f}\right)^2</math>
 
|-
 
|-
|<math>X(f)=\delta (f-\frac{\omega_0}{2\pi})</math>
 
 
|}
 
|}

Revision as of 15:08, 9 September 2010

CTFT of a complex exponential
$ a.\text{ } x(t)=e^{i\omega_0 t} $
$ X(f)= \mathcal{X}(2\pi f)=2\pi \delta (2\pi f-\omega_0) $
$ Since\text{ } k\delta (kt)=\delta (t),\forall k\ne 0 $
$ X(f)=\delta (f-\frac{\omega_0}{2\pi}) $
$ b.\text{ } x(t)=e^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $
$ X(f)= \mathcal{X}(2\pi f)=\frac{1}{a+i2\pi f} $
$ c.\text{ } x(t)=te^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $
$ X(f)= \mathcal{X}(2\pi f)=\left( \frac{1}{a+i2\pi f}\right)^2 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood