Line 1: Line 1:
<span style="color:green"> I suggest putting a link next to each formula explaining how to obtain it from the formula in terms of <math>\omega</math>. Also, I would not use the "mathcal" (curly) font for the transform variable, just a capital letter instead. </span> --[[User:Mboutin|Mboutin]] 08:52, 3 September 2010 (UTC)
+
*<span style="color:green"> I suggest putting a link next to each formula explaining how to obtain it from the formula in terms of <math>\omega</math>. Also, I would not use the "mathcal" (curly) font for the transform variable, just a capital letter instead. </span> --[[User:Mboutin|Mboutin]] 08:52, 3 September 2010 (UTC).
 +
**<span style="color:green"> Fixed the X(f) notation </span> -[[User:sbiddand|Sbiddand]]
  
 
{|
 
{|
Line 8: Line 9:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  CT Fourier Transform  
 
| align="right" style="padding-right: 1em;" |  CT Fourier Transform  
| <math>\mathcal{X}(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>
+
| <math>X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform  
 
| align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform  
| <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(f))=\int_{-\infty}^{\infty}\mathcal{X}(f)e^{i2\pi ft} df \,</math>
+
| <math>\, x(t)=\mathcal{F}^{-1}(X(f))=\int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \,</math>
 
|}
 
|}
  
Line 21: Line 22:
 
| <span class="texhtml">''x''(''t'')</span>  
 
| <span class="texhtml">''x''(''t'')</span>  
 
| <math>\longrightarrow</math>
 
| <math>\longrightarrow</math>
| <math> \mathcal{X}(f) </math>
+
| <math> X(f) </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | CTFT of a unit impulse  
 
| align="right" style="padding-right: 1em;" | CTFT of a unit impulse  
Line 95: Line 96:
 
| <span class="texhtml">''x''(''t'')</span>  
 
| <span class="texhtml">''x''(''t'')</span>  
 
| <math>\longrightarrow</math>
 
| <math>\longrightarrow</math>
| <math> \mathcal{X}(f) </math>
+
| <math> X(f) </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | multiplication property
 
| align="right" style="padding-right: 1em;" | multiplication property
Line 118: Line 119:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | Parseval's relation  
 
| align="right" style="padding-right: 1em;" | Parseval's relation  
| <math>\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |\mathcal{X}(f)|^2 df</math>
+
| <math>\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df</math>
 
|}
 
|}
  

Revision as of 17:30, 6 September 2010

  • I suggest putting a link next to each formula explaining how to obtain it from the formula in terms of $ \omega $. Also, I would not use the "mathcal" (curly) font for the transform variable, just a capital letter instead. --Mboutin 08:52, 3 September 2010 (UTC).
CT Fourier Transform Pairs and Properties (frequency f in hertz per time unit) (info)
Definition CT Fourier Transform and its Inverse
CT Fourier Transform $ X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $
Inverse DT Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(X(f))=\int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \, $
CT Fourier Transform Pairs
x(t) $ \longrightarrow $ $ X(f) $
CTFT of a unit impulse $ \delta (t)\ $ $ 1 \! \ $
CTFT of a shifted unit impulse $ \delta (t-t_0)\ $ $ e^{-i2\pi ft_0} $
CTFT of a complex exponential $ e^{iw_0t} $ $ \delta (f - \frac{\omega_0}{2\pi}) \ $
$ e^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ $ \frac{1}{a+i2\pi f} $
$ te^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ $ \left( \frac{1}{a+i2\pi f}\right)^2 $
CTFT of a cosine $ \cos(\omega_0 t) \ $ $ \frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right] \ $
CTFT of a sine $ sin(\omega_0 t) \ $ $ \frac{1}{2i} \left[\delta (f - \frac{\omega_0}{2\pi}) - \delta (f + \frac{\omega_0}{2\pi})\right] $
CTFT of a rect $ \left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ $ $ \frac{\sin \left(2\pi Tf \right)}{\pi f} \ $
CTFT of a sinc $ \frac{2 \sin \left( W t \right)}{\pi t } \ $ $ \left\{\begin{array}{ll}1, & \text{ if }|f| <\frac{W}{2\pi},\\ 0, & \text{else.}\end{array} \right. \ $
CTFT of a periodic function $ \sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t} $ $ \sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi}) \ $
CTFT of an impulse train $ \sum^{\infty}_{n=-\infty} \delta(t-nT) \ $ $ \frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T}) \ $
CT Fourier Transform Properties
x(t) $ \longrightarrow $ $ X(f) $
multiplication property $ x(t)y(t) \ $ $ X(f)*Y(f) =\int_{-\infty}^{\infty} X(\theta)Y(f-\theta)d\theta $
convolution property $ x(t)*y(t) \! $ $ X(f)Y(f) \! $
time reversal $ \ x(-t) $ $ \ X(-f) $
Other CT Fourier Transform Properties
Parseval's relation $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df $

Back to Collective Table

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010