Line 6: Line 6:
 
----
 
----
  
General Principles:
+
'''General Principles'''
 +
 
 
Given vague knowledge about a situation and some training data (i.e. feature vector values for which the class is known)
 
Given vague knowledge about a situation and some training data (i.e. feature vector values for which the class is known)
 
<math>\vec{x}_l, \qquad l=1,\ldots,\text{hopefully large number}</math>
 
<math>\vec{x}_l, \qquad l=1,\ldots,\text{hopefully large number}</math>
Line 26: Line 27:
  
 
'''How to estimate <math>\vec{\Theta}_i</math>?'''
 
'''How to estimate <math>\vec{\Theta}_i</math>?'''
 +
 +
Consider each class separately
 +
<math>\vec{\Theta}_i \to \vec{\Theta}</math>
 +
<math>\mathcal{D}_i \to \mathcal{D}</math>

Revision as of 08:36, 21 April 2010

In Lecture 11, we continued our discussion of Parametric Density Estimation techniques. We discussed the Maximum Likelihood Estimation (MLE) method and look at a couple of 1-dimension examples for case when feature in dataset follows Gaussian distribution. First, we looked at case where mean parameter was unknown, but variance parameter is known. Then we followed with another example where both mean and variance where unknown. Finally, we looked at the slight "bias" problem when calculating the variance.

Below are the notes from lecture.

Maximum Likelihood Estimation (MLE)


General Principles

Given vague knowledge about a situation and some training data (i.e. feature vector values for which the class is known) $ \vec{x}_l, \qquad l=1,\ldots,\text{hopefully large number} $

we want to estimate $ p(\vec{x}|\omega_i), \qquad i=1,\ldots,k $

1.Assume a parameter form for $ p(\vec{x}|\omega_i), \qquad i=1,\ldots,k $

2. Use training data to estimate the parameters of $ p(\vec{x}|\omega_i) $, e.g. if you assume $ p(\vec{x}|\omega_i)=\mathcal{N}(\mu,\Sigma) $, then need to estimate $ \mu $ and $ \Sigma $.

3. Hope that as cardinality of training set increases, estimate for parameters converges to true parameters.


Let $ \mathcal{D}_i $ be the training set for class $ \omega_i, \qquad i=1,\ldots,k $. Assume elements of $ \mathcal{D}_i $ are i.i.d. with $ p(\vec{x}|\omega_i) $. Choose a parametric form for $ p(\vec{x}|\omega_i) $.

$ p(\vec{x}|\omega_i, \vec{\Theta}_i) $ where $ \vec{\Theta}_i $ are the parameters.


How to estimate $ \vec{\Theta}_i $?

Consider each class separately $ \vec{\Theta}_i \to \vec{\Theta} $ $ \mathcal{D}_i \to \mathcal{D} $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman