Line 33: Line 33:
  
 
|-
 
|-
| 11-13  
+
| [[Lecture11ECE662S10|11]],12,13  
 
|  
 
|  
 
6. Parametric Density Estimation  
 
6. Parametric Density Estimation  
Line 53: Line 53:
 
| 8. Linear Discriminants
 
| 8. Linear Discriminants
 
|-
 
|-
| [[Lecture22ECE662S10|22]], [[Lecture23ECE662S10|23]] ,[[Lecture24ECE662S10|24]],25  
+
| [[Lecture22ECE662S10|22]], [[Lecture23ECE662S10|23]] ,[[Lecture24ECE662S10|24]],[[Lecture25ECE662S10|25]],[[Lecture26ECE662S10|26]]
 
|  
 
|  
 
9. Non-Linear Discriminant functions  
 
9. Non-Linear Discriminant functions  
Line 61: Line 61:
  
 
|-
 
|-
| 26,27,28,29,30  
+
| 27,28,29,30  
 
| 10. Clustering and decision trees
 
| 10. Clustering and decision trees
 
|}
 
|}

Latest revision as of 07:55, 22 April 2010


Course Outline, ECE662 Spring 2010 Prof. Mimi

Note: This is an approximate outline that is subject to change throughout the semester.


Lecture Topic
1 1. Introduction
1 2. What is pattern Recognition
2,3 3. Finite vs Infinite feature spaces
4,5 4. Bayes Rule
6-10

5. Discriminant functions

  • Definition;
  • Application to normally distributed features;
  • Error analysis.
11,12,13

6. Parametric Density Estimation

  • Maximum likelihood estimation
  • Bayesian parameter estimation
13-19

7. Non-parametric Density Estimation

  • Parzen Windows
  • K-nearest neighbors
  • The nearest neighbor classification rule.
19,20,21, 22 8. Linear Discriminants
22, 23 ,24,25,26

9. Non-Linear Discriminant functions

  • Support Vector Machines 
  • Artificial Neural Networks
27,28,29,30 10. Clustering and decision trees



Back to 2010 Spring ECE 662 mboutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang