Line 2: Line 2:
  
 
Further :
 
Further :
 +
          the conditional probability of "E" given "F" is =<math> \frac {P(EnF)}{P(F)}</math>
 +
 +
''defn:'' if P(E|F) = P(E) , then E and F are independent events otherwise they are dependant events.
 +
 +
            note: independence implies that  <math> P(E)= P(E|F) = \frac {P(EnF)}{P(F)}</math>
 +
                   
 +
                      or P(E).P(F)=P(EnF).
 +
            note : if P(E|F) = P(E)
 +
                                then P(F|E) = P(F)

Revision as of 18:06, 21 September 2008

If E and F are events in S (sample space) the the conditional probability of E and F is P(E|F) = P(E intersect F).

Further :

         the conditional probability of "E" given "F" is =$  \frac {P(EnF)}{P(F)} $

defn: if P(E|F) = P(E) , then E and F are independent events otherwise they are dependant events.

           note: independence implies that  $  P(E)= P(E|F) = \frac {P(EnF)}{P(F)} $
                    
                      or P(E).P(F)=P(EnF).
           note : if P(E|F) = P(E)
                               then P(F|E) = P(F)

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin