Line 18: | Line 18: | ||
| 2. What is pattern Recognition | | 2. What is pattern Recognition | ||
|- | |- | ||
− | | [[Lecture2ECE662S10|2]],[[Lecture3ECE662S10|3]] | + | | [[Lecture2ECE662S10|2]],[[Lecture3ECE662S10|3]] |
| 3. Finite vs Infinite feature spaces | | 3. Finite vs Infinite feature spaces | ||
|- | |- | ||
Line 50: | Line 50: | ||
|- | |- | ||
− | | 19,20,[[Lecture21ECE662S10|21]], [[Lecture22ECE662S10|22]] | + | | 19,20,[[Lecture21ECE662S10|21]], [[Lecture22ECE662S10|22]] |
| 8. Linear Discriminants | | 8. Linear Discriminants | ||
|- | |- | ||
− | | | + | | 22,23,24,25 |
| | | | ||
9. Non-Linear Discriminant functions | 9. Non-Linear Discriminant functions | ||
*Support Vector Machines | *Support Vector Machines | ||
− | *Artificial Neural Networks | + | *Artificial Neural Networks |
− | + | ||
|- | |- | ||
− | | | + | | 26,27,28,29,30 |
− | | 10. Clustering | + | | 10. Clustering and decision trees |
|} | |} | ||
Revision as of 09:14, 13 April 2010
Course Outline, ECE662 Spring 2010 Prof. Mimi
Note: This is an approximate outline that is subject to change throughout the semester.
Lecture | Topic |
---|---|
1 | 1. Introduction |
1 | 2. What is pattern Recognition |
2,3 | 3. Finite vs Infinite feature spaces |
4,5 | 4. Bayes Rule |
6-10 |
5. Discriminant functions
|
11-13 |
6. Parametric Density Estimation
|
13-19 |
7. Non-parametric Density Estimation
|
19,20,21, 22 | 8. Linear Discriminants |
22,23,24,25 |
9. Non-Linear Discriminant functions
|
26,27,28,29,30 | 10. Clustering and decision trees |
Back to 2010 Spring ECE 662 mboutin