Line 1: Line 1:
[[Category:2010_Spring_ECE_662_mboutin]]
+
<br>
  
= Course Outline, [[ECE662]] Spring 2010 [[User:mboutin|Prof. Mimi]]  =
+
= Course Outline, [[ECE662]] Spring 2010 [[User:Mboutin|Prof. Mimi]]  =
Note: This is an approximate outline that is subject to change throughout the semester.
+
  
 +
Note: This is an approximate outline that is subject to change throughout the semester.
  
 +
<br>
  
 +
{| width="55%" border="1" cellpadding="1" cellspacing="1"
 +
|-
 +
! scope="col" | Lecture
 +
! scope="col" | Topic
 +
|-
 +
| 1
 +
| 1. Introduction
 +
|-
 +
| 1
 +
| 2. What is pattern Recognition
 +
|-
 +
| 2-3
 +
| 3. Finite vs Infinite feature spaces
 +
|-
 +
| 4-5
 +
| 4. Bayes Rule
 +
|-
 +
| 6-10
 +
|
 +
5. Discriminate functions
 +
 +
- Definition;
 +
 +
- Application to normally distributed features;
 +
 +
- Error analysis.
 +
 +
|-
 +
| 11-12
 +
|
 +
6. Parametric Density Estimation
 +
 +
-Maximum likelihood estimation
 +
 +
-Bayesian parameter estimation
 +
 +
|-
 +
|
 +
|
 +
7. Non-parametric Density Estimation
 +
 +
-Parzen Windows
 +
 +
-K-nearest neighbors
 +
 +
-The nearest neighbor classification rule.
 +
 +
|-
 +
|
 +
| 8. Linear Discriminants
 +
|-
 +
|
 +
| 9. SVM
 +
|-
 +
|
 +
| 10. ANN
 +
|-
 +
|
 +
| 11. Decision Trees
 +
|-
 +
|
 +
| 12. Clustering
 +
|}
 +
 +
<br>
  
 
----
 
----
 +
 
  [[2010 Spring ECE 662 mboutin|Back to 2010 Spring ECE 662 mboutin]]
 
  [[2010 Spring ECE 662 mboutin|Back to 2010 Spring ECE 662 mboutin]]
 +
 +
[[Category:2010_Spring_ECE_662_mboutin]]

Revision as of 06:54, 9 March 2010


Course Outline, ECE662 Spring 2010 Prof. Mimi

Note: This is an approximate outline that is subject to change throughout the semester.


Lecture Topic
1 1. Introduction
1 2. What is pattern Recognition
2-3 3. Finite vs Infinite feature spaces
4-5 4. Bayes Rule
6-10

5. Discriminate functions

- Definition;

- Application to normally distributed features;

- Error analysis.

11-12

6. Parametric Density Estimation

-Maximum likelihood estimation

-Bayesian parameter estimation

7. Non-parametric Density Estimation

-Parzen Windows

-K-nearest neighbors

-The nearest neighbor classification rule.

8. Linear Discriminants
9. SVM
10. ANN
11. Decision Trees
12. Clustering



Back to 2010 Spring ECE 662 mboutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett