Line 2: Line 2:
 
Prove that <math> \forall n\in{\mathbb N}, n^5-n </math> is a multiple of n.
 
Prove that <math> \forall n\in{\mathbb N}, n^5-n </math> is a multiple of n.
  
Base case: n=0...    0^5=0  as we want
+
Base case: n=0...    <math> 0^5=0  </math> as we want
  
 
Inductive step: Assume that 5 divides <math> n^5-n </math> and show that 5 divides <math> (n+1)^5-(n+1) </math>
 
Inductive step: Assume that 5 divides <math> n^5-n </math> and show that 5 divides <math> (n+1)^5-(n+1) </math>

Revision as of 14:39, 7 September 2008

Example: Prove that $ \forall n\in{\mathbb N}, n^5-n $ is a multiple of n.

Base case: n=0... $ 0^5=0 $ as we want

Inductive step: Assume that 5 divides $ n^5-n $ and show that 5 divides $ (n+1)^5-(n+1) $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett