(Inclusion-Exclusion Principle (Basic))
Line 6: Line 6:
  
 
Subtracting <math>|B \cap C| </math> corrects the overcount.
 
Subtracting <math>|B \cap C| </math> corrects the overcount.
 +
 +
In general,
 +
 +
<math>    |A(1) \cup A(2) \cup ... \cup A(n)| =  </math>
 +
 +
<math>    |A(1)| + |A(2)| + ... + |A(n)| </math>
 +
 +
<math>    - |A(1) \cap A(2)| - |A(1) \cap A(3)| - ... - |A(n-1) \cap A(n)| </math>
 +
 +
<math>    + |A(1) \cap A(2) \cap A(3)| + |A(1) \cap A(2) \cap A(4)| + ... + |A(n-2) \cap A(n-1) \cap A(n)| </math>
 +
 +
<math>    + (-1)^(n+1) |A(1) \cap A(2) \cap A(3) \cap ... \cap A(n)| </math>

Revision as of 16:20, 7 September 2008

Inclusion-Exclusion Principle (Basic)

Let B and C be subsets of a given set A. To count the number of elements in the union of B and C, we must evaluate the following:

$ |B \cup C| = |B| + |C| - |B \cap C| $

Subtracting $ |B \cap C| $ corrects the overcount.

In general,

$ |A(1) \cup A(2) \cup ... \cup A(n)| = $

$ |A(1)| + |A(2)| + ... + |A(n)| $

$ - |A(1) \cap A(2)| - |A(1) \cap A(3)| - ... - |A(n-1) \cap A(n)| $

$ + |A(1) \cap A(2) \cap A(3)| + |A(1) \cap A(2) \cap A(4)| + ... + |A(n-2) \cap A(n-1) \cap A(n)| $

$ + (-1)^(n+1) |A(1) \cap A(2) \cap A(3) \cap ... \cap A(n)| $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood