Line 1: | Line 1: | ||
{| | {| | ||
− | |||
− | |||
|- | |- | ||
− | ! | + | ! style="background: rgb(228, 188, 126) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Vector Identities and Operator Definitions |
|- | |- | ||
− | + | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Vector Identities | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | Notes |
+ | | Identity | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
+ | | | ||
+ | <math>\bold{x}\cdot \left(\bold{y}\times \bold{z}\right)= \left(\bold{x}\times \bold{y}\right)\cdot \bold{z}</math> | ||
+ | |||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
+ | | <math>\bold{x}\times \left(\bold{y}\times \bold{z} \right)=\bold{y}\left(\bold{x} \cdot \bold{z} \right)-\bold{z} \left( \bold{x}\cdot\bold{y}\right) </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
+ | | <math>\left( \bold{x}\times \bold{y}\right)\cdot \left(\bold{z}\times \bold{w} \right)=\left( \bold{x}\cdot \bold{z}\right) \left(\bold{y} \cdot \bold{w} \right)- \left(\bold{x}\cdot\bold{w} \right) \left( \bold{y}\cdot\bold{z}\right) </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
+ | | <math>\nabla \left( \bold{x}\cdot \bold{y}\right)= \bold{y}\times \left(\nabla\times \bold{x}\right)+ \bold{x} \times \left(\nabla\times \bold{y} \right)+ \left(\bold{y}\cdot\nabla \right)\bold{x} + \left( \bold{x}\cdot\nabla\right) \bold{y} </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
+ | | <math> \nabla \left( f+g \right)= \nabla f+ \nabla g </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
+ | | <math> \nabla \left( f g \right)= f \nabla g+ g\nabla f </math> | ||
|- | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math> \nabla \cdot \left( \bold{x}+\bold{y} \right)= \nabla \cdot \bold{x}+ \nabla \cdot \bold{y} </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math> \nabla \cdot \left( f \bold{x}\right)= \bold{x} \cdot \nabla f + f \left( \nabla \cdot\bold{x} \right) </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math> \nabla \cdot \left( \bold{x}\times \bold{y}\right)= \bold{y} \cdot \left( \nabla \times \bold{x}\right) - \bold{x} \cdot \left( \nabla \times \bold{y}\right) </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math> \nabla \cdot \left(\nabla\times \bold{x} \right)= 0 </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math> \nabla \times \nabla \bold{x} = 0 </math> | ||
|} | |} | ||
+ | |||
{| | {| | ||
|- | |- | ||
− | ! | + | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Vector Operators in Rectangular Coordinates |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | Notes |
+ | | Operator | ||
+ | | | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
+ | | <math>\nabla f(x,y,z) = \mathbf{\hat x} \frac{\partial f}{\partial x}+\mathbf{\hat y}\frac{\partial f}{\partial y}+\mathbf{\hat z} \frac{\partial f}{\partial z}</math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
+ | | <math>\nabla \cdot \bold{v} = \frac{\partial v_x}{\partial x}+\frac{\partial v_y}{\partial y}+ \frac{\partial v_z}{\partial z}</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\nabla \times \bold{v} = \mathbf{\hat x} \left( \frac{\partial v_z}{\partial y}-\frac{\partial v_y}{\partial z} \right) + | ||
\mathbf{\hat y} \left( \frac{\partial v_x}{\partial z}-\frac{\partial v_z}{\partial x} \right) + | \mathbf{\hat y} \left( \frac{\partial v_x}{\partial z}-\frac{\partial v_z}{\partial x} \right) + | ||
− | \mathbf{\hat z} \left( \frac{\partial v_y}{\partial x}-\frac{\partial v_x}{\partial y} \right) | + | \mathbf{\hat z} \left( \frac{\partial v_y}{\partial x}-\frac{\partial v_x}{\partial y} \right) </math> |
− | </math> | + | |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | <br> |
− | </math> | + | | <math>\nabla^2 f = \frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+ \frac{\partial^2 f}{\partial z^2}</math> |
− | + | ||
|} | |} | ||
+ | <br> | ||
{| | {| | ||
|- | |- | ||
− | ! | + | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Vector Operators in Spherical Coordinates |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | Notes |
+ | | Operator | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | [[Formula contributed by Anshita|<math>\nabla f(\rho,\phi,z) = {\partial f \over \partial \rho}\boldsymbol{\hat \rho} | ||
+ {1 \over \rho}{\partial f \over \partial \phi}\boldsymbol{\hat \phi} | + {1 \over \rho}{\partial f \over \partial \phi}\boldsymbol{\hat \phi} | ||
+ {\partial f \over \partial z}\boldsymbol{\hat z}</math> ]] | + {\partial f \over \partial z}\boldsymbol{\hat z}</math> ]] | ||
− | |- | + | |- |
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\nabla \cdot \bold{v} =</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\nabla \times \bold{v} =</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | | ||
+ | | <math>\nabla^2 f =</math> | ||
|} | |} | ||
+ | <br> | ||
{| | {| | ||
|- | |- | ||
− | ! | + | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Vector Operators in Cylindrical Coordinates |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | Notes |
+ | | Operator | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | <br> | ||
+ | | [[Formula contributed by Anshita|<math>\nabla f(x,y,z) = {\partial f \over \partial r}\boldsymbol{\hat r} | ||
+ {1 \over r}{\partial f \over \partial \theta}\boldsymbol{\hat \theta} | + {1 \over r}{\partial f \over \partial \theta}\boldsymbol{\hat \theta} | ||
− | + {1 \over r\sin\theta}{\partial f \over \partial \phi}\boldsymbol{\hat \phi}</math>]] | + | + {1 \over r\sin\theta}{\partial f \over \partial \phi}\boldsymbol{\hat \phi}</math>]] |
− | + | ||
|} | |} | ||
---- | ---- | ||
− | [[MegaCollectiveTableTrial1|Back to Collective Table]] | + | |
+ | [[MegaCollectiveTableTrial1|Back to Collective Table]] | ||
+ | |||
[[Category:Formulas]] | [[Category:Formulas]] |
Revision as of 10:01, 2 April 2010
Vector Identities and Operator Definitions | |
---|---|
Vector Identities | |
Notes | Identity |
$ \bold{x}\cdot \left(\bold{y}\times \bold{z}\right)= \left(\bold{x}\times \bold{y}\right)\cdot \bold{z} $ | |
$ \bold{x}\times \left(\bold{y}\times \bold{z} \right)=\bold{y}\left(\bold{x} \cdot \bold{z} \right)-\bold{z} \left( \bold{x}\cdot\bold{y}\right) $ | |
$ \left( \bold{x}\times \bold{y}\right)\cdot \left(\bold{z}\times \bold{w} \right)=\left( \bold{x}\cdot \bold{z}\right) \left(\bold{y} \cdot \bold{w} \right)- \left(\bold{x}\cdot\bold{w} \right) \left( \bold{y}\cdot\bold{z}\right) $ | |
$ \nabla \left( \bold{x}\cdot \bold{y}\right)= \bold{y}\times \left(\nabla\times \bold{x}\right)+ \bold{x} \times \left(\nabla\times \bold{y} \right)+ \left(\bold{y}\cdot\nabla \right)\bold{x} + \left( \bold{x}\cdot\nabla\right) \bold{y} $ | |
$ \nabla \left( f+g \right)= \nabla f+ \nabla g $ | |
$ \nabla \left( f g \right)= f \nabla g+ g\nabla f $ | |
$ \nabla \cdot \left( \bold{x}+\bold{y} \right)= \nabla \cdot \bold{x}+ \nabla \cdot \bold{y} $ | |
$ \nabla \cdot \left( f \bold{x}\right)= \bold{x} \cdot \nabla f + f \left( \nabla \cdot\bold{x} \right) $ | |
$ \nabla \cdot \left( \bold{x}\times \bold{y}\right)= \bold{y} \cdot \left( \nabla \times \bold{x}\right) - \bold{x} \cdot \left( \nabla \times \bold{y}\right) $ | |
$ \nabla \cdot \left(\nabla\times \bold{x} \right)= 0 $ | |
$ \nabla \times \nabla \bold{x} = 0 $ |
Vector Operators in Rectangular Coordinates | ||
---|---|---|
Notes | Operator | |
$ \nabla f(x,y,z) = \mathbf{\hat x} \frac{\partial f}{\partial x}+\mathbf{\hat y}\frac{\partial f}{\partial y}+\mathbf{\hat z} \frac{\partial f}{\partial z} $ | ||
$ \nabla \cdot \bold{v} = \frac{\partial v_x}{\partial x}+\frac{\partial v_y}{\partial y}+ \frac{\partial v_z}{\partial z} $ | ||
$ \nabla \times \bold{v} = \mathbf{\hat x} \left( \frac{\partial v_z}{\partial y}-\frac{\partial v_y}{\partial z} \right) + \mathbf{\hat y} \left( \frac{\partial v_x}{\partial z}-\frac{\partial v_z}{\partial x} \right) + \mathbf{\hat z} \left( \frac{\partial v_y}{\partial x}-\frac{\partial v_x}{\partial y} \right) $ | ||
|
$ \nabla^2 f = \frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+ \frac{\partial^2 f}{\partial z^2} $ |
Vector Operators in Spherical Coordinates | |
---|---|
Notes | Operator |
$ \nabla f(\rho,\phi,z) = {\partial f \over \partial \rho}\boldsymbol{\hat \rho} + {1 \over \rho}{\partial f \over \partial \phi}\boldsymbol{\hat \phi} + {\partial f \over \partial z}\boldsymbol{\hat z} $ | |
$ \nabla \cdot \bold{v} = $ | |
$ \nabla \times \bold{v} = $ | |
$ \nabla^2 f = $ |
Vector Operators in Cylindrical Coordinates | |
---|---|
Notes | Operator |
|
$ \nabla f(x,y,z) = {\partial f \over \partial r}\boldsymbol{\hat r} + {1 \over r}{\partial f \over \partial \theta}\boldsymbol{\hat \theta} + {1 \over r\sin\theta}{\partial f \over \partial \phi}\boldsymbol{\hat \phi} $ |