Line 5: Line 5:
 
This recitation covers the material from Nov. 4 to Nov. 13.  So far, we have introduced the basic knowledge of 2D signals. As a review, let us start from the Continuous-Space Fourier Transform(CSFT) definitons and its inverse transform.
 
This recitation covers the material from Nov. 4 to Nov. 13.  So far, we have introduced the basic knowledge of 2D signals. As a review, let us start from the Continuous-Space Fourier Transform(CSFT) definitons and its inverse transform.
 
In 1D, we have:
 
In 1D, we have:
*<math>X(f) = \int{x(t)e^{-j2\pi ft} dt } </math>
+
*<math>X(f) = \int_{-\infty}^{\infty}{x(t)e^{-j2\pi ft} dt } </math>
*<math>x(t) = \int{X(2\pi f)e^{j2\pi ft} df } </math>
+
*<math>x(t) = \int_{-\infty}^{\infty}{X(2\pi f)e^{j2\pi ft} df } </math>
 
Similarily, in2D, we have:
 
Similarily, in2D, we have:
*Forward transform- <math>F(u,v) = \int\int{f(x,y)e^{-j2\pi(ux+vy)} dxdy } </math>                     
+
*Forward transform- <math>F(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux+vy)} dxdy }</math>                     
*Inverse transform- <math>f(x,y) = \int\int{F(u,v)e^{j2\pi(ux+vy)} dudv } </math>                         
+
*Inverse transform- <math>f(x,y) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{F(u,v)e^{j2\pi(ux+vy)} dudv } </math>                         
 
Like 1D signals, properties  such as the linearity, the shifting property, and so on, remained the same in 2D signals.
 
Like 1D signals, properties  such as the linearity, the shifting property, and so on, remained the same in 2D signals.
 
*'''Linearity:'''<math>\displaystyle af_1(x,y)+bf_2(x,y)------CSFT------ aF_1(u,v)+bF_2(u,v) </math>
 
*'''Linearity:'''<math>\displaystyle af_1(x,y)+bf_2(x,y)------CSFT------ aF_1(u,v)+bF_2(u,v) </math>
Line 16: Line 16:
 
*'''Modulation:<math>f(x,y)e^{j2\pi(xu_o+yv_o)}----------CSFT---------F(u-u_o,v-v_o)</math>'''  
 
*'''Modulation:<math>f(x,y)e^{j2\pi(xu_o+yv_o)}----------CSFT---------F(u-u_o,v-v_o)</math>'''  
 
*'''Reciprocity:'''<math>\displaystyle F(x,y)-------------CSFT ------f(-u,-v)</math>  
 
*'''Reciprocity:'''<math>\displaystyle F(x,y)-------------CSFT ------f(-u,-v)</math>  
*'''Parseval’s relation:<math>\int\int{|f(x,y)|^2dxdy }=\int\int{|F(u,v)|^2dudv } </math>'''
+
*'''Parseval’s relation:<math>\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|f(x,y)|^2dxdy }=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|F(u,v)|^2dudv } </math>'''
*'''Initial value: <math>F(0,0)=\int\int{f(x,y)dxdy } </math>'''
+
*'''Initial value: <math>F(0,0)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)dxdy } </math>'''
 
*'''If f(x,y) is real, the magnitued of F(u,v) is an even function; the angle of F(u,v) is an odd function.'''
 
*'''If f(x,y) is real, the magnitued of F(u,v) is an even function; the angle of F(u,v) is an odd function.'''
  
Line 38: Line 38:
 
*<math> cos[2\pi(u_ox+v_oy)]---CSFT---\frac{1}{2} [\delta (u-u_o,v-v_o)+\delta (u+u_o,v+v_o)] </math>
 
*<math> cos[2\pi(u_ox+v_oy)]---CSFT---\frac{1}{2} [\delta (u-u_o,v-v_o)+\delta (u+u_o,v+v_o)] </math>
 
<math> \displaystyle Convolution Theorem</math>
 
<math> \displaystyle Convolution Theorem</math>
*<math>f_1(x,y)**f_2(x,y)---CSFT---F_1(u,v)F_2(u,v) </math>
+
*<math>\displaystyle f_1(x,y)**f_2(x,y)---CSFT---F_1(u,v)F_2(u,v) </math>
 
<math> \displaystyle Product Theorem</math>  
 
<math> \displaystyle Product Theorem</math>  
*<math>f_1(x,y)f_2(x,y)---CSFT---F_1(u,v)**F_2(u,v) </math>
+
*<math>\displaystyle f_1(x,y)f_2(x,y)---CSFT---F_1(u,v)**F_2(u,v) </math>
  
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]

Revision as of 05:52, 17 November 2009

Back to ECE438 course page


Spectral Analysis of 2D Signals (Nov.16)

This recitation covers the material from Nov. 4 to Nov. 13. So far, we have introduced the basic knowledge of 2D signals. As a review, let us start from the Continuous-Space Fourier Transform(CSFT) definitons and its inverse transform. In 1D, we have:

  • $ X(f) = \int_{-\infty}^{\infty}{x(t)e^{-j2\pi ft} dt } $
  • $ x(t) = \int_{-\infty}^{\infty}{X(2\pi f)e^{j2\pi ft} df } $

Similarily, in2D, we have:

  • Forward transform- $ F(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux+vy)} dxdy } $
  • Inverse transform- $ f(x,y) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{F(u,v)e^{j2\pi(ux+vy)} dudv } $

Like 1D signals, properties such as the linearity, the shifting property, and so on, remained the same in 2D signals.

  • Linearity:$ \displaystyle af_1(x,y)+bf_2(x,y)------CSFT------ aF_1(u,v)+bF_2(u,v) $
  • Scaling:$ f(\frac{x}{a},\frac{y}{b})--------------CSFT--------|ab|F(au,bv) $
  • Shifting: $ f(x-x_o,y-y_o)------------CSFT-------F(u,v)e^{-j2\pi(ux_o+vy_o)} $
  • Modulation:$ f(x,y)e^{j2\pi(xu_o+yv_o)}----------CSFT---------F(u-u_o,v-v_o) $
  • Reciprocity:$ \displaystyle F(x,y)-------------CSFT ------f(-u,-v) $
  • Parseval’s relation:$ \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|f(x,y)|^2dxdy }=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|F(u,v)|^2dudv } $
  • Initial value: $ F(0,0)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)dxdy } $
  • If f(x,y) is real, the magnitued of F(u,v) is an even function; the angle of F(u,v) is an odd function.

Before we go to the important transform pairs, the separability is a very important property of 2D signals. It enables us to transform 2D signals to our familiar 1D signals. given,

    • $ g(x)-----CSFT-----------G(u) $
    • $ h(y)---- CSFT-----------H(v) $
    • $ f(x,y)-- CSFT------------F(u,v) $

If a function can be rewritten as $ \displaystyle f(x,y)=g(x)h(y) $; then, its fourier transform is $ \displaystyle F(u,v)=G(u)H(v) $.

  • For example, $ \displaystyle rect(x,y)=rect(x)rect(y)----------CSFT------------sinc(u)sinc(v)=sinc(u,v) $
  • Notes: If we are trying to draw rect(x,y) from a top view, it will just look like a square. In the 3D plot, keep the top view as a base, making the height as 1. The plot is a cube. Similar as sinc(u,v).

Another special function is the circ function and the jinc function.

  • $ \displaystyle circ(x,y)------------CSFT----------------jinc(u,v) $
  • Notes: if we are trying to draw circ(x,y) from a top view, it will look like a circle with a radius of ½. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cylinder.

Other important transform pairs:

  • $ \displaystyle \delta (x,y)---CSFT---1 $
  • $ \displaystyle 1---CSFT--- \delta (u,v) $
  • $ \displaystyle rect(x)---CSFT---sinc(u) \delta (v) $
  • $ \displaystyle \delta (x)--CSFT---\delta (v) $
  • $ e^{j2\pi(u_ox+v_oy)}---CSFT--- \delta (u-u_o,v-v_o) $
  • $ cos[2\pi(u_ox+v_oy)]---CSFT---\frac{1}{2} [\delta (u-u_o,v-v_o)+\delta (u+u_o,v+v_o)] $

$ \displaystyle Convolution Theorem $

  • $ \displaystyle f_1(x,y)**f_2(x,y)---CSFT---F_1(u,v)F_2(u,v) $

$ \displaystyle Product Theorem $

  • $ \displaystyle f_1(x,y)f_2(x,y)---CSFT---F_1(u,v)**F_2(u,v) $

Back to ECE438 course page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood