Line 8: Line 8:
  
 
In 1D, we have:
 
In 1D, we have:
*<math>X(f) = \int{x(t)e^{-j2\{pi}ft} dt } </math>
+
*<math>X(f) = \int{x(t)e^{-j2\pi ft} dt } </math>
*<math>x(t) = \int{X(2pif)e^{j2\{pi}ft} df } </math>
+
*<math>x(t) = \int{X(2\pi f)e^{j2\pi ft} df } </math>
  
 
Similarily, in2D, we have:
 
Similarily, in2D, we have:
Line 29: Line 29:
 
*'''Parseval’s relation:<math>\int{|f(x,y)|^2dxdy }=\int{|F(u,v)|^2dudv } </math>'''
 
*'''Parseval’s relation:<math>\int{|f(x,y)|^2dxdy }=\int{|F(u,v)|^2dudv } </math>'''
  
*Initial value: <math>F(0,0)=\int{f(x,y)dxdy } </math>
+
*'''Initial value: <math>F(0,0)=\int{f(x,y)dxdy } </math>'''
 
   
 
   
 
Before we go to the important transform pairs, the separability is a very important property of 2D signals. It enables us to transform 2D signals to our familiar 1D signals.
 
Before we go to the important transform pairs, the separability is a very important property of 2D signals. It enables us to transform 2D signals to our familiar 1D signals.
  
 
Given,  
 
Given,  
     <math>g(x)-----1-D CSFT-----------G(u)</math>'''
+
     <math>g(x)-----CSFT-----------G(u)</math>'''
     <math>h(y)----1-D  CSFT-----------H(v)</math>'''
+
     <math>h(y)---- CSFT-----------H(v)</math>'''
     <math>f(x,y)---2-D CSFT------------F(u,v)</math>'''
+
     <math>f(x,y)-- CSFT------------F(u,v)</math>'''
  
 
'''If a function can be rewritten as '''<math>f(x,y)=g(x)h(y)</math>'''; then, its fourier transform is'''      '''<math>F(u,v)=G(u)H(v) </math>'''  .
 
'''If a function can be rewritten as '''<math>f(x,y)=g(x)h(y)</math>'''; then, its fourier transform is'''      '''<math>F(u,v)=G(u)H(v) </math>'''  .

Revision as of 14:58, 16 November 2009

Back to ECE438 course page


Spectral Analysis of 2D Signals (Nov.16)

This recitation covers the material from Nov. 4 to Nov. 13. So far, we have introduced the basic knowledge of 2D signals. As a review, let us start from the Continuous-Space Fourier Transform(CSFT) definitons and its inverse transform.

In 1D, we have:

  • $ X(f) = \int{x(t)e^{-j2\pi ft} dt } $
  • $ x(t) = \int{X(2\pi f)e^{j2\pi ft} df } $

Similarily, in2D, we have:

  • Forward transform- $ F(u,v) = \int{f(x,y)e^{-j2\pi(ux+vy)} dxdy } $
  • Inverse transform- $ f(x,y) = \int{F(u,v)e^{j2\pi(ux+vy)} dudv } $

Like 1D signals, properties such as the linearity, the shifting property, and so on, remained the same in 2D signals.

  • Linearity:$ af_1(x,y)+bf_2(x,y)------CSFT------ aF_1(u,v)+bF_2(u,v) $
  • Scaling:$ f(\frac{x}{a},\frac{y}{b})---------------CSFT--------|ab|F(au,bv) $
  • Shifting: $ f(x-x_o,y-y_o)------------CSFT-------F(u,v)e^{-j2\pi(ux_o+vy_o)} $
  • Modulation:$ f(x,y)e^{j2\pi(xu_o+yv_o)}------------CSFT---------F(u-u_o,v-v_o) $
  • Reciprocity:$ F(x,y)-----------------CSFT ------f(-u,-v) $
  • Parseval’s relation:$ \int{|f(x,y)|^2dxdy }=\int{|F(u,v)|^2dudv } $
  • Initial value: $ F(0,0)=\int{f(x,y)dxdy } $

Before we go to the important transform pairs, the separability is a very important property of 2D signals. It enables us to transform 2D signals to our familiar 1D signals.

Given,

    $ g(x)-----CSFT-----------G(u) $
    $ h(y)---- CSFT-----------H(v) $
    $ f(x,y)-- CSFT------------F(u,v) $

If a function can be rewritten as $ f(x,y)=g(x)h(y) $; then, its fourier transform is $ F(u,v)=G(u)H(v) $ .

  • For example, $ rect(x,y)=rect(x)rect(y)----------CSFT------------sinc(u)sinc(v)=sinc(u,v) $
  • Notes: If we are trying to draw rect(x,y) from a top view, it will just look like a square. In the 3D plot, keep the top view as a base, making the height as 1. The plot is a cube. Similar as sinc(u,v).

Another special function is the circ function and the jinc function.

  • $ circ(x,y)------------CSFT----------------jinc(u,v) $
  • Notes: if we are trying to draw circ(x,y) from a top view, it will look like a circle with a radius of ½. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cylinder.
  • Other important transform pairs:
  • Other representations of 2D signals:

I will come back later!

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin