Line 24: Line 24:
 
! colspan="2" style="background: #eee;" | Vector Operators in Rectangular Coordinates
 
! colspan="2" style="background: #eee;" | Vector Operators in Rectangular Coordinates
 
|-
 
|-
| align="right" style="padding-right: 1em;" |  place note here || <math>\nabla f(x,y,z) = \bold{e}_1 \frac{\partial f}{\partial x}+\bold{e}_2 \frac{\partial f}{\partial y}+\bold{e}_3 \frac{\partial f}{\partial z}</math>  
+
| align="right" style="padding-right: 1em;" |  place note here || <math>\nabla f(x,y,z) = \mathbf{\hat x} \frac{\partial f}{\partial x}+\mathbf{\hat y}\frac{\partial f}{\partial y}+\mathbf{\hat z} \frac{\partial f}{\partial z}</math>  
 
|-  
 
|-  
 
|}
 
|}
Line 33: Line 33:
 
! colspan="2" style="background: #eee;" | Vector Operators in Spherical Coordinates
 
! colspan="2" style="background: #eee;" | Vector Operators in Spherical Coordinates
 
|-
 
|-
| align="right" style="padding-right: 1em;" |  place note here ||[[Formula_contributed_by_Anshita| <math>\nabla f(x,y,z) = {\partial f \over \partial \rho}\boldsymbol{\hat \rho}  
+
| align="right" style="padding-right: 1em;" |  place note here ||[[Formula_contributed_by_Anshita| <math>\nabla f(\rho,\phi,z) = {\partial f \over \partial \rho}\boldsymbol{\hat \rho}  
 
   + {1 \over \rho}{\partial f \over \partial \phi}\boldsymbol{\hat \phi}  
 
   + {1 \over \rho}{\partial f \over \partial \phi}\boldsymbol{\hat \phi}  
 
   + {\partial f \over \partial z}\boldsymbol{\hat z}</math> ]]
 
   + {\partial f \over \partial z}\boldsymbol{\hat z}</math> ]]

Revision as of 15:20, 4 November 2009

Vector Identities and Operator Definitions
Vector Identities
place note here $ \bold{x}\cdot \left(\bold{y}\times \bold{z}\right)= \left(\bold{x}\times \bold{y}\right)\cdot \bold{z} $
place note here $ \bold{x}\times \left(\bold{y}\times \bold{z} \right)=\bold{y}\left(\bold{x} \cdot \bold{z} \right)-\bold{z} \left( \bold{x}\cdot\bold{y}\right) $
place note here $ \left( \bold{x}\times \bold{y}\right)\cdot \left(\bold{z}\times \bold{w} \right)=\left( \bold{x}\cdot \bold{z}\right) \left(\bold{y} \cdot \bold{w} \right)- \left(\bold{x}\cdot\bold{w} \right) \left( \bold{y}\cdot\bold{z}\right) $
place note here $ \nabla \left( f+g \right)= \nabla f+ \nabla g $
place note here $ \nabla \left( f g \right)= f \nabla g+ g\nabla f $
place note here $ \nabla \cdot \left(\nabla\times \bold{x} \right)= 0 $
place note here $ \nabla \times \nabla \bold{x} = 0 $
Vector Operators in Rectangular Coordinates
place note here $ \nabla f(x,y,z) = \mathbf{\hat x} \frac{\partial f}{\partial x}+\mathbf{\hat y}\frac{\partial f}{\partial y}+\mathbf{\hat z} \frac{\partial f}{\partial z} $


Vector Operators in Spherical Coordinates
place note here $ \nabla f(\rho,\phi,z) = {\partial f \over \partial \rho}\boldsymbol{\hat \rho} + {1 \over \rho}{\partial f \over \partial \phi}\boldsymbol{\hat \phi} + {\partial f \over \partial z}\boldsymbol{\hat z} $


Vector Operators in Cylindrical Coordinates
place note here $ \nabla f(x,y,z) = $

Back to Collective Table

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood