Line 1: | Line 1: | ||
{| | {| | ||
|- | |- | ||
− | ! colspan="2" style="background: #e4bc7e; font-size: 110%;" | Complex Number Identities and Formulas | + | ! colspan="2" style="background: #e4bc7e; font-size: 110%;" | Complex Number Identities and Formulas [[more_on_complex_numbers|(info)]] |
|- | |- | ||
! colspan="2" style="background: #eee;" | Basic Definitions | ! colspan="2" style="background: #eee;" | Basic Definitions | ||
Line 9: | Line 9: | ||
| align="right" style="padding-right: 1em;" | electrical engineers' imaginary number || <math>j=\sqrt{-1}\ </math> | | align="right" style="padding-right: 1em;" | electrical engineers' imaginary number || <math>j=\sqrt{-1}\ </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | [[more_on_complex_conjugate|( | + | | align="right" style="padding-right: 1em;" | [[more_on_complex_conjugate|(info)]] conjugate of a complex number || if <math>z=a+ib</math>, for <math>a,b\in {\mathbb R}</math>, then <math> \bar{z}=a-ib </math> |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|( | + | | align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| z \| = z \bar{z} </math> |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|( | + | | align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math> \| z \| = \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2}</math> |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|( | + | | align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| a+ib \| = \sqrt{a^2+b^2} </math>, for <math>a,b\in {\mathbb R}</math> |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|( | + | | align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| r e^{i \theta} \| = r </math>, for <math>r,\theta\in {\mathbb R}</math> |
|- | |- | ||
! colspan="2" style="background: #eee;" | Euler's Formula and Related Equalities | ! colspan="2" style="background: #eee;" | Euler's Formula and Related Equalities |
Revision as of 08:36, 2 November 2009
Complex Number Identities and Formulas (info) | |
---|---|
Basic Definitions | |
imaginary number | $ i=\sqrt{-1} \ $ |
electrical engineers' imaginary number | $ j=\sqrt{-1}\ $ |
(info) conjugate of a complex number | if $ z=a+ib $, for $ a,b\in {\mathbb R} $, then $ \bar{z}=a-ib $ |
(info) magnitude of a complex number | $ \| z \| = z \bar{z} $ |
(info) magnitude of a complex number | $ \| z \| = \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2} $ |
(info) magnitude of a complex number | $ \| a+ib \| = \sqrt{a^2+b^2} $, for $ a,b\in {\mathbb R} $ |
(info) magnitude of a complex number | $ \| r e^{i \theta} \| = r $, for $ r,\theta\in {\mathbb R} $ |
Euler's Formula and Related Equalities | |
Euler's formula | $ e^{iw_0t}=\cos w_0t+i\sin w_0t \ $ |
A really cute formula | $ e^{i\pi}=-1 \ $ |
Cosine function in terms of complex exponentials | $ \cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2} $ |
Sine function in terms of complex exponentials | $ \sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i} $ |