Line 1: Line 1:
 
{|
 
{|
 
|-  
 
|-  
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Complex Number Identities and Formulas
+
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" | Complex Number Identities and Formulas [[more_on_complex_numbers|(info)]]
 
|-
 
|-
 
! colspan="2" style="background: #eee;" | Basic Definitions
 
! colspan="2" style="background: #eee;" | Basic Definitions
Line 9: Line 9:
 
| align="right" style="padding-right: 1em;" | electrical engineers' imaginary number || <math>j=\sqrt{-1}\ </math>
 
| align="right" style="padding-right: 1em;" | electrical engineers' imaginary number || <math>j=\sqrt{-1}\ </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[more_on_complex_conjugate|(more)]] conjugate of a complex number || if <math>z=a+ib</math>, for <math>a,b\in {\mathbb R}</math>, then <math> \bar{z}=a-ib </math>
+
| align="right" style="padding-right: 1em;" | [[more_on_complex_conjugate|(info)]] conjugate of a complex number || if <math>z=a+ib</math>, for <math>a,b\in {\mathbb R}</math>, then <math> \bar{z}=a-ib </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(more)]] magnitude of a complex number || <math>\| z \| = z \bar{z} </math>
+
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| z \| = z \bar{z} </math>
 
|-  
 
|-  
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(more)]] magnitude of a complex number || <math> \| z \| =  \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2}</math>
+
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math> \| z \| =  \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2}</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(more)]] magnitude of a complex number || <math>\| a+ib \| = \sqrt{a^2+b^2} </math>, for <math>a,b\in {\mathbb R}</math>
+
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| a+ib \| = \sqrt{a^2+b^2} </math>, for <math>a,b\in {\mathbb R}</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(more)]] magnitude of a complex number || <math>\| r e^{i \theta} \| = r </math>, for <math>r,\theta\in {\mathbb R}</math>
+
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(info)]] magnitude of a complex number || <math>\| r e^{i \theta} \| = r </math>, for <math>r,\theta\in {\mathbb R}</math>
 
|-
 
|-
 
! colspan="2" style="background: #eee;" | Euler's Formula and Related Equalities
 
! colspan="2" style="background: #eee;" | Euler's Formula and Related Equalities

Revision as of 08:36, 2 November 2009

Complex Number Identities and Formulas (info)
Basic Definitions
imaginary number $ i=\sqrt{-1} \ $
electrical engineers' imaginary number $ j=\sqrt{-1}\ $
(info) conjugate of a complex number if $ z=a+ib $, for $ a,b\in {\mathbb R} $, then $ \bar{z}=a-ib $
(info) magnitude of a complex number $ \| z \| = z \bar{z} $
(info) magnitude of a complex number $ \| z \| = \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2} $
(info) magnitude of a complex number $ \| a+ib \| = \sqrt{a^2+b^2} $, for $ a,b\in {\mathbb R} $
(info) magnitude of a complex number $ \| r e^{i \theta} \| = r $, for $ r,\theta\in {\mathbb R} $
Euler's Formula and Related Equalities
Euler's formula $ e^{iw_0t}=\cos w_0t+i\sin w_0t \ $
A really cute formula $ e^{i\pi}=-1 \ $
Cosine function in terms of complex exponentials $ \cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2} $
Sine function in terms of complex exponentials $ \sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i} $

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett