Line 9: Line 9:
 
| align="right" style="padding-right: 1em;" | electrical engineers' imaginary number || <math>j=\sqrt{-1}\ </math>
 
| align="right" style="padding-right: 1em;" | electrical engineers' imaginary number || <math>j=\sqrt{-1}\ </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[more_on_complex_conjugate|(more)]] conjugate of a complex number || if <math>z=a+jb</math>, for <math>a,b\in {\mathbb R}</math>, then <math> \bar{z}=a-jb </math>
+
| align="right" style="padding-right: 1em;" | [[more_on_complex_conjugate|(more)]] conjugate of a complex number || if <math>z=a+ib</math>, for <math>a,b\in {\mathbb R}</math>, then <math> \bar{z}=a-ib </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(more)]] magnitude of a complex number || <math>\| z \| = z \bar{z} </math>
 
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(more)]] magnitude of a complex number || <math>\| z \| = z \bar{z} </math>
Line 15: Line 15:
 
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(more)]] magnitude of a complex number || <math> \| z \| =  \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2}</math>
 
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(more)]] magnitude of a complex number || <math> \| z \| =  \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2}</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(more)]] magnitude of a complex number || <math>\| a+jb \| = \sqrt{a^2+b^2} </math>, for <math>a,b\in {\mathbb R}</math>
+
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(more)]] magnitude of a complex number || <math>\| a+ib \| = \sqrt{a^2+b^2} </math>, for <math>a,b\in {\mathbb R}</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(more)]] magnitude of a complex number || <math>\| r e^{i \theta} \| = r </math>, for <math>r,\theta\in {\mathbb R}</math>
 
| align="right" style="padding-right: 1em;" | [[more_on_complex_magnitude|(more)]] magnitude of a complex number || <math>\| r e^{i \theta} \| = r </math>, for <math>r,\theta\in {\mathbb R}</math>
Line 27: Line 27:
 
| align="right" style="padding-right: 1em;" | Cosine function in terms of complex exponentials|| <math>\cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2}</math>
 
| align="right" style="padding-right: 1em;" | Cosine function in terms of complex exponentials|| <math>\cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2}</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | Sine function in terms of complex exponentials||<math>\sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2j}</math>
+
| align="right" style="padding-right: 1em;" | Sine function in terms of complex exponentials||<math>\sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i}</math>
 
|-  
 
|-  
 
|}
 
|}
 
----
 
----
 
[[ MegaCollectiveTableTrial1|Back to Collective Table]]
 
[[ MegaCollectiveTableTrial1|Back to Collective Table]]

Revision as of 08:33, 2 November 2009

Complex Number Identities and Formulas
Basic Definitions
imaginary number $ i=\sqrt{-1} \ $
electrical engineers' imaginary number $ j=\sqrt{-1}\ $
(more) conjugate of a complex number if $ z=a+ib $, for $ a,b\in {\mathbb R} $, then $ \bar{z}=a-ib $
(more) magnitude of a complex number $ \| z \| = z \bar{z} $
(more) magnitude of a complex number $ \| z \| = \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2} $
(more) magnitude of a complex number $ \| a+ib \| = \sqrt{a^2+b^2} $, for $ a,b\in {\mathbb R} $
(more) magnitude of a complex number $ \| r e^{i \theta} \| = r $, for $ r,\theta\in {\mathbb R} $
Euler's Formula and Related Equalities
Euler's formula $ e^{iw_0t}=\cos w_0t+i\sin w_0t \ $
A really cute formula $ e^{i\pi}=-1 \ $
Cosine function in terms of complex exponentials $ \cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2} $
Sine function in terms of complex exponentials $ \sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i} $

Back to Collective Table

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett