Line 1: Line 1:
 
+
{|
 
+
|-
=ComplexNumberFormulas=
+
! colspan="2" style="background: #bbb; font-size: 110%;" | Complex Number Identities and Formulas
 
+
|-
 
+
! colspan="2" style="background: #eee;" | Euler's Formula and Related Equalities
 
+
|-
Put your content here . . .
+
| align="right" style="padding-right: 1em;" | Euler's formula || <math>e^{jw_0t}=\cos w_0t+j\sin w_0t</math>
 
+
|-
 
+
| align="right" style="padding-right: 1em;" | Cosine function in terms of complex exponentials|| <math>\cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2}</math>
 
+
|-
 
+
| align="right" style="padding-right: 1em;" | Sine function in terms of complex exponentials||<math>\sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j}</math>
[[ MegaCollectiveTableTrial1|Back to MegaCollectiveTableTrial1]]
+
|-
 +
! colspan="2" style="background: #eee;" | Trigonometric Identities
 +
|-
 +
| align="right" style="padding-right: 1em;" | note/name || identity
 +
|-
 +
| align="right" style="padding-right: 1em;" | note/name|| identity
 +
|-
 +
|}
 +
----
 +
[[ MegaCollectiveTableTrial1|Back to Collective Table]]

Revision as of 06:23, 29 October 2009

Complex Number Identities and Formulas
Euler's Formula and Related Equalities
Euler's formula $ e^{jw_0t}=\cos w_0t+j\sin w_0t $
Cosine function in terms of complex exponentials $ \cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2} $
Sine function in terms of complex exponentials $ \sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j} $
Trigonometric Identities
note/name identity
note/name identity

Back to Collective Table

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood