Line 1: | Line 1: | ||
=Discrete-time Fourier Transform Pairs and Properties= | =Discrete-time Fourier Transform Pairs and Properties= | ||
− | Please feel free to add onto this table! | + | Please feel free to add onto this table! And if you see a mistake, please correct it. |
Line 22: | Line 22: | ||
|- | |- | ||
| align="right" style="padding-right: 1em;" | || <math>\sin\left(\omega _0 n\right) u[n] \ </math> || ||<math>\frac{1}{2j}\left( \frac{1}{1-e^{-j(\omega -\omega _0)}}-\frac{1}{1-e^{-j(\omega +\omega _0)}}\right)</math> | | align="right" style="padding-right: 1em;" | || <math>\sin\left(\omega _0 n\right) u[n] \ </math> || ||<math>\frac{1}{2j}\left( \frac{1}{1-e^{-j(\omega -\omega _0)}}-\frac{1}{1-e^{-j(\omega +\omega _0)}}\right)</math> | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | {| | ||
+ | |- | ||
+ | ! colspan="4" style="background: #eee;" | DT Fourier Transform Properties | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | || <math>x[n]</math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) </math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | multiplication property|| <math>x[n]y[n] \ </math> || || <math>\frac{1}{2\pi} \int_{2\pi} X(\theta)Y(\omega-\theta)d\theta</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | convolution property || <math>x[n]*y[n] \!</math> || ||<math> X(\omega)Y(\omega) \!</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | time reversal ||<math>\ x[-n] </math> || ||<math>\ X(-\omega)</math> | ||
|- | |- | ||
|} | |} | ||
---- | ---- | ||
[[ MegaCollectiveTableTrial1|Back to Collective Table]] | [[ MegaCollectiveTableTrial1|Back to Collective Table]] |
Revision as of 06:50, 28 October 2009
Discrete-time Fourier Transform Pairs and Properties
Please feel free to add onto this table! And if you see a mistake, please correct it.
DT Fourier transform and its Inverse | |
---|---|
DT Fourier Transform | $ \,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\, $ |
Inverse DT Fourier Transform | $ \,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\, $ |
DT Fourier Transform Pairs | |||
---|---|---|---|
$ x[n] $ | $ \longrightarrow $ | $ \mathcal{X}(\omega) $ | |
DTFT of a complex exponential | $ e^{jw_0n} $ | $ \pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ $ | |
$ a^{n} u[n], |a|<1 \ $ | $ \frac{1}{1-ae^{-j\omega}} \ $ | ||
$ \sin\left(\omega _0 n\right) u[n] \ $ | $ \frac{1}{2j}\left( \frac{1}{1-e^{-j(\omega -\omega _0)}}-\frac{1}{1-e^{-j(\omega +\omega _0)}}\right) $ |
DT Fourier Transform Properties | |||
---|---|---|---|
$ x[n] $ | $ \longrightarrow $ | $ \mathcal{X}(\omega) $ | |
multiplication property | $ x[n]y[n] \ $ | $ \frac{1}{2\pi} \int_{2\pi} X(\theta)Y(\omega-\theta)d\theta $ | |
convolution property | $ x[n]*y[n] \! $ | $ X(\omega)Y(\omega) \! $ | |
time reversal | $ \ x[-n] $ | $ \ X(-\omega) $ |