Line 9: Line 9:
 
|-  
 
|-  
 
| align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform || <math>\,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\,</math>
 
| align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform || <math>\,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\,</math>
 
+
|}
 +
{|
 
|-
 
|-
! colspan="2" style="background: #eee;" | DT Fourier Transform Pairs
+
! colspan="4" style="background: #eee;" | DT Fourier Transform Pairs
 +
|-
 +
| align="right" style="padding-right: 1em;" |  || <math>x[n]</math> || <math>\longrightarrow</math>|| <math> \mathcal{X}(\omega) </math>
 
|-  
 
|-  
| align="right" style="padding-right: 1em;" | DTFT of a complex exponential || <math>e^{jw_0n} \longrightarrow 2\pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ </math>
+
| align="right" style="padding-right: 1em;" | DTFT of a complex exponential || <math>e^{jw_0n}</math> || || <math>\pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ </math>
 
+
 
|-
 
|-
 
|-  
 
|-  
| align="right" style="padding-right: 1em;" | [[:DT Fourier an_ECE301Fall2008mboutin]] || {{:DT Fourier an_ECE301Fall2008mboutin}}
+
| align="right" style="padding-right: 1em;" | || <math>a^{n} u[n]|a|<1 \ </math> || ||<math>\frac{1}{1-ae^{-j\omega}} \ </math>
 
|-
 
|-
 
|}
 
|}
 
 
 
 
 
 
 
----
 
----
 
[[ MegaCollectiveTableTrial1|Back to Collective Table]]
 
[[ MegaCollectiveTableTrial1|Back to Collective Table]]

Revision as of 05:38, 27 October 2009

Discrete-time Fourier Transform Pairs and Properties

Please feel free to add onto this table!


DT Fourier transform and its Inverse
DT Fourier Transform $ \,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\, $
Inverse DT Fourier Transform $ \,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\, $
DT Fourier Transform Pairs
$ x[n] $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
DTFT of a complex exponential $ e^{jw_0n} $ $ \pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ $
$ a^{n} u[n], |a|<1 \ $ $ \frac{1}{1-ae^{-j\omega}} \ $

Back to Collective Table

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett