Line 6: | Line 6: | ||
! colspan="2" style="background: #eee;" | DT Fourier transform and its Inverse | ! colspan="2" style="background: #eee;" | DT Fourier transform and its Inverse | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | DT Fourier Transform || <math>\,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\,</math> |
|- | |- | ||
| align="right" style="padding-right: 1em;" | [[DT Inverse Fourier Transform_ECE301Fall2008mboutin]] || {{:DT Inverse Fourier Transform_ECE301Fall2008mboutin}} | | align="right" style="padding-right: 1em;" | [[DT Inverse Fourier Transform_ECE301Fall2008mboutin]] || {{:DT Inverse Fourier Transform_ECE301Fall2008mboutin}} |
Revision as of 05:25, 27 October 2009
Discrete-time Fourier Transform Pairs and Properties
Please feel free to add onto this table!
DT Fourier transform and its Inverse | |
---|---|
DT Fourier Transform | $ \,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\, $ |
DT Inverse Fourier Transform_ECE301Fall2008mboutin | $ \,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\, $ |
DT Fourier Transform Pairs | |
DT Fourier Transform Pair_ECE301Fall2008mboutin | $ e^{jw_0n} \longrightarrow 2\pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ $ |
DT Fourier an_ECE301Fall2008mboutin | $ a^{n} u[n], |a|<1 \longrightarrow \frac{1}{1-ae^{-j\omega}} \ $ |