Line 1: Line 1:
 +
=Discrete-time Fourier Transform Pairs and Properties=
 +
Please feel free to add onto this table!
  
  
=DTFourierTransformCollectedfromECE301=
+
{|
 +
! colspan="2" style="background: #eee;" | DT Fourier transform and its Inverse
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[DT Fourier Transform_ECE301Fall2008mboutin]] || {{:DT Fourier Transform_ECE301Fall2008mboutin}}
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[DT Inverse Fourier Transform_ECE301Fall2008mboutin]] || {{:DT Inverse Fourier Transform_ECE301Fall2008mboutin}}
 +
|-
 +
! colspan="2" style="background: #eee;" | DT Fourier Transform Pairs
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[:DT Fourier Transform Pair_ECE301Fall2008mboutin]] || {{:DT Fourier Transform Pair_ECE301Fall2008mboutin}}
 +
|-
 +
|-
 +
| align="right" style="padding-right: 1em;" | [[:DT Fourier an_ECE301Fall2008mboutin]] || {{:DT Fourier an_ECE301Fall2008mboutin}}
 +
|-
 +
|}
  
  
  
Put your content here . . .
 
  
  
  
 
+
----
[[ MegaCollectiveTableTrial1|Back to MegaCollectiveTableTrial1]]
+
[[ MegaCollectiveTableTrial1|Back to Collective Table]]

Revision as of 05:24, 27 October 2009

Discrete-time Fourier Transform Pairs and Properties

Please feel free to add onto this table!


DT Fourier transform and its Inverse
DT Fourier Transform_ECE301Fall2008mboutin $ \,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\, $
DT Inverse Fourier Transform_ECE301Fall2008mboutin $ \,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\, $
DT Fourier Transform Pairs
DT Fourier Transform Pair_ECE301Fall2008mboutin $ e^{jw_0n} \longrightarrow 2\pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ $
DT Fourier an_ECE301Fall2008mboutin $ a^{n} u[n], |a|<1 \longrightarrow \frac{1}{1-ae^{-j\omega}} \ $





Back to Collective Table

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett