Line 26: Line 26:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | sinc function || <math>sinc(\theta)=\frac{sin(\pi\theta)}{\pi\theta}</math>
 
| align="right" style="padding-right: 1em;" | sinc function || <math>sinc(\theta)=\frac{sin(\pi\theta)}{\pi\theta}</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | CT unit step function || <math> u(t)=\left\{ \begin{array}{ll}1, & t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R}</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | DT unit step function || <math>u[n]=\left\{ \begin{array}{ll}1, & n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }n\in {\mathbb Z} </math>
 
|-  
 
|-  
 
|}
 
|}

Revision as of 07:02, 28 October 2009

Some General Purpose Formulas and Definitions

General Purpose Formulas
Series
Finite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. $
Infinite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $
Euler's Formula and Related Equalities
Euler's formula $ e^{jw_0t}=cosw_0t+jsinw_0t $
Cosine function in terms of complex exponentials $ cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2} $
Sine function in terms of complex exponentials $ sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j} $
Definition of some Basic Functions (what engineers call "Signals")
sinc function $ sinc(\theta)=\frac{sin(\pi\theta)}{\pi\theta} $
CT unit step function $ u(t)=\left\{ \begin{array}{ll}1, & t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R} $
DT unit step function $ u[n]=\left\{ \begin{array}{ll}1, & n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }n\in {\mathbb Z} $

Back to Collective Table

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett