Line 24: Line 24:
 
For all <math>a,b</math> in the complex plane, and all <math>x_1[n],x_2[n]</math> with the same period N
 
For all <math>a,b</math> in the complex plane, and all <math>x_1[n],x_2[n]</math> with the same period N
  
<math>ax_1[n] + bx_2[n] \longleftarrow aX_1[k] + bX_2[k]</math>
+
<math>ax_1[n] + bx_2[n] \longrightarrow aX_1[k] + bX_2[k]</math>
  
 
'''Time-Shifting'''
 
'''Time-Shifting'''
 
For all <math>n_0</math> included in Z, and all x[n] with period N
 
For all <math>n_0</math> included in Z, and all x[n] with period N
  
<math>x[n - n_0] \longleftarrow X[k]e^{-j \frac{2{\pi}}{N} n_0 k}</math>
+
<math>x[n - n_0] \longrightarrow X[k]e^{-j \frac{2{\pi}}{N} n_0 k}</math>
 +
 
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]

Revision as of 09:12, 25 September 2009


DFT ( Discrete Fourier Transform )

The DFT is a finite sum, so it can be computed using a computer. Used for discrete, time-limited signals, or discrete periodic signals. The DFT of a signal will be discrete and have a finite duration.


Definition

DFT

  • $ X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, k = 0, 1, 2, ..., N-1 $

Inverse DFT (IDFT)

  • $ x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j \frac{2{\pi}}{N}kn}}, n = 0, 1, 2, ..., N-1 $


Properties

Linearity For all $ a,b $ in the complex plane, and all $ x_1[n],x_2[n] $ with the same period N

$ ax_1[n] + bx_2[n] \longrightarrow aX_1[k] + bX_2[k] $

Time-Shifting For all $ n_0 $ included in Z, and all x[n] with period N

$ x[n - n_0] \longrightarrow X[k]e^{-j \frac{2{\pi}}{N} n_0 k} $

Back to ECE438 course page

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin