Line 3: Line 3:
 
== DFT ( Discrete Fourier Transform ) ==
 
== DFT ( Discrete Fourier Transform ) ==
  
The DFT is a finite sum, so it can be computed using a computer.  Used for discrete, time-limited signals, or discrete periodic signals.
+
The DFT is a finite sum, so it can be computed using a computer.  Used for discrete, time-limited signals, or discrete periodic signals.  The DFT of a signal will be discrete and have a finite duration.
  
 +
----
  
 
== Definition ==
 
== Definition ==
Line 14: Line 15:
 
'''Inverse DFT (IDFT)'''  
 
'''Inverse DFT (IDFT)'''  
 
*<math>x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j \frac{2{\pi}}{N}kn}},  n = 0, 1, 2, ..., N-1</math>
 
*<math>x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j \frac{2{\pi}}{N}kn}},  n = 0, 1, 2, ..., N-1</math>
 +
 +
----
 +
 +
 +
== Properties ==
 +
 +
'''Linearity'''
 +
For all <math>a,b</math> in the complex plane, and all <math>x_1[n],x_2[n]</math> with the same period N
 +
 +
<math>ax_1[n] + bx_2[n] \longleftarrow zX_1[k] + bX_2[k]</math>
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]

Revision as of 09:08, 25 September 2009


DFT ( Discrete Fourier Transform )

The DFT is a finite sum, so it can be computed using a computer. Used for discrete, time-limited signals, or discrete periodic signals. The DFT of a signal will be discrete and have a finite duration.


Definition

DFT

  • $ X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, k = 0, 1, 2, ..., N-1 $

Inverse DFT (IDFT)

  • $ x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j \frac{2{\pi}}{N}kn}}, n = 0, 1, 2, ..., N-1 $


Properties

Linearity For all $ a,b $ in the complex plane, and all $ x_1[n],x_2[n] $ with the same period N

$ ax_1[n] + bx_2[n] \longleftarrow zX_1[k] + bX_2[k] $ Back to ECE438 course page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett