Line 59: Line 59:
  
 
           <math>= \frac {-1}{z} \frac{1}{1-\frac{1}{z}} \ </math>              , Observe <math>|\frac{1}{z}| < 1</math>
 
           <math>= \frac {-1}{z} \frac{1}{1-\frac{1}{z}} \ </math>              , Observe <math>|\frac{1}{z}| < 1</math>
 +
 +
Now by using the geometric series formula, the series can be formed
 +
 +
              <math>= \frac {-1}{z} \sum_{n =\0}^{\infty} (\frac{1}{z})^{n} \ </math>

Revision as of 08:15, 23 September 2009

                                                 Inverse Z-transform

$ x[n]= \frac{1}{2\prod j} \oint_C X(z) z^{n-1} dz \ $

         $ = \sum_ {poles a_i of X(z) z^{n-1}} \  $ Residue $ X(z) z^{n-1} \  $
      
          $ = \sum_ {poles a_i of X(z) z^{n-1}} \  $ Coefficient of degree(-1) term  in the power expansion of $ X(z) z^{n-1} \  $ about $ a_i $

So inverting X(z) involves power series

$ f(x)= \sum_{n =-\infty}^{\infty} \frac {f^{n} x_0 (x-x_0)^{n}} {n!} \ $

$ \frac{1}{1-x} = \sum_{n =-\infty}^{\infty} x^{n} \ $ , geometric series when |x|< 1


Shortcut to computing equivalent to complex integration formula's

1) Write x(z) as a power series.

$ x(z)= \sum_{n =-\infty}^{\infty} C_n z^n \ $ ,series must converge for all z's in the ROC of x(z)

2) Observe that

$ x(z) = \sum_{n =-\infty}^{\infty} x[n] z^{-n} \ $

i.e.,

$ x(z) = \sum_{n =-\infty}^{\infty} x[-n] z^n \ $

3) By comparison

$ x[-n]= C_n \ $

or

$ x[n]= C_{-n} \ $

Example 1: $ x(z) = \frac{1}{1-z} \ $

Two possible ROC's Case 1: |z|< 1

$ x(z) = \sum_{n =\0}^{\infty} z^n \ $ , by the formula of goemetric series

$ = \sum_{n =-\infty}^{\0} z^{-k} \ $

$ = \sum_{k =-\infty}^{\infty} u(-k) z^{-k} \ $

So x[n]=u[-n]

Consistent of having inside of a circle as ROC.


Case 2: |z|>1

$ x(z)= \frac{1}{1-z} \ $

         $ = \frac{1}{z (\frac{1}{z}-1)} \  $
         $ = \frac {-1}{z} \frac{1}{1-\frac{1}{z}} \  $               , Observe $ |\frac{1}{z}| < 1 $

Now by using the geometric series formula, the series can be formed

              $ = \frac {-1}{z} \sum_{n =\0}^{\infty} (\frac{1}{z})^{n} \  $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal