Line 7: Line 7:
 
Hint for IV.6.3 --[[User:Bell|Steve Bell]]
 
Hint for IV.6.3 --[[User:Bell|Steve Bell]]
  
We assume <math>f''=f</math> on <math>\mathbb C</math>.
+
We assume <math>(f)''=f</math> on <math>\mathbb C</math>.
  
 
Notice that
 
Notice that

Revision as of 05:07, 24 September 2009


Homework 4

HWK 4 problems

Hint for IV.6.3 --Steve Bell

We assume $ (f)''=f $ on $ \mathbb C $.

Notice that

$ (e^z f)''=e^zf +2e^zf'+e^zf''=2(e^zf + e^zf')=2(e^zf)'. $

Let $ g=e^zf. $ Then $ g'=2g $ and now you can use the theorem from class that concerns solutions of this first order complex ODE. By the way, you will also need to use the fact that if two analytic functions on the complex plane have the same derivative, then they must differ by a constant.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood