(New page: Back to ECE438 course page == Convergence of Z Transform == '''Definition:''' A series <math>\sum_{\infty}^{n=0} a_n</math> is said to converge to a value V...) |
|||
Line 17: | Line 17: | ||
'''Facts about ROC''' | '''Facts about ROC''' | ||
+ | |||
X(z) converges absolutely | X(z) converges absolutely | ||
<math>\leftrightarrow \sum_n |x[n]z^{-n}|</math> converges | <math>\leftrightarrow \sum_n |x[n]z^{-n}|</math> converges | ||
<math>\leftrightarrow \sum_n |x[n]||z^{-n}|</math> converges | <math>\leftrightarrow \sum_n |x[n]||z^{-n}|</math> converges | ||
+ | |||
+ | '''Fact 1:''' ROC is made of rings around the origin. If <math>z_0</math> is in the ROC, then any other z with <math>|z| = |z_0|</math> is also in the ROC | ||
+ | |||
+ | '''Fact 2:''' If x[n] is "causal" (i.e. x[n] = 0 for all n < 0) and <math>z_0</math> is in the ROC then any z with <math>|z|>|z_0|</math> is also in the ROC | ||
+ | |||
+ | Proof for z with <math>|z|> |z_0|</math>: | ||
+ | <math>\sum_{n=- \infty}^{\infty}|x[n]z^{-n}| = \sum_{n=0}^{\infty}|x[n]z^{-n}| = \sum_{n=0}^{\infty}|x[n]|{|z|}^{-n}</math> | ||
+ | <math>\le \sum_{n=0}^{\infty}|x[n]|{|z_0|}^{-n} = \sum_{n=0}^{\infty}|x[n]z_0^{-n}|</math> which converges by assumption | ||
+ | <math>\rightarrow</math> X(z) converges absolutely |
Revision as of 17:38, 21 September 2009
Convergence of Z Transform
Definition: A series $ \sum_{\infty}^{n=0} a_n $ is said to converge to a value V if for every $ \epsilon > 0 $, there exists a positive integer M such that $ |\sum_{n=0}^{N-1} a_n - V | < \epsilon, for all N > M $
For the Z transform, it is customary to talk about the "region of absolute convergence."
Definition: A series $ \sum^{\infty}_{n=0} a_n $ is called "absolutely convergent" when $ \sum_{n=0}^{\infty} |a_n | $ converges.
Fact: If $ \sum|a_n| $ converges, then $ \sum a_n $ converges also, i.e. the region of absolute convergence is included in the region of convergence.
In the literature and here: ROC means "region of absolute convergence"
Reference for Z transform: Chapter 10 of the ECE 301 book
Facts about ROC
X(z) converges absolutely
$ \leftrightarrow \sum_n |x[n]z^{-n}| $ converges $ \leftrightarrow \sum_n |x[n]||z^{-n}| $ converges
Fact 1: ROC is made of rings around the origin. If $ z_0 $ is in the ROC, then any other z with $ |z| = |z_0| $ is also in the ROC
Fact 2: If x[n] is "causal" (i.e. x[n] = 0 for all n < 0) and $ z_0 $ is in the ROC then any z with $ |z|>|z_0| $ is also in the ROC
Proof for z with $ |z|> |z_0| $: $ \sum_{n=- \infty}^{\infty}|x[n]z^{-n}| = \sum_{n=0}^{\infty}|x[n]z^{-n}| = \sum_{n=0}^{\infty}|x[n]|{|z|}^{-n} $ $ \le \sum_{n=0}^{\infty}|x[n]|{|z_0|}^{-n} = \sum_{n=0}^{\infty}|x[n]z_0^{-n}| $ which converges by assumption $ \rightarrow $ X(z) converges absolutely