Line 2: | Line 2: | ||
==Scaling of the Dirac Delta (Impulse Function)== | ==Scaling of the Dirac Delta (Impulse Function)== | ||
− | <math>\displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;for\;\;\alpha>0</math> | + | <math>\displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;\;\alpha>0</math> |
'''Mini Proof''' | '''Mini Proof''' | ||
Line 8: | Line 8: | ||
<math>\int_{-\infty}^{\infty}\delta(x)dx = 1</math> | <math>\int_{-\infty}^{\infty}\delta(x)dx = 1</math> | ||
− | '''Let''' <math>\displaystyle y=\alpha x | + | '''Let''' <math>\displaystyle y=\alpha x\;\;\;\;\;\;\;\;\;\;\;\;\;dx=\frac{dy}{\alpha}</math> |
− | + | ||
− | + | ||
<math>\displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha}</math> | <math>\displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha}</math> |
Revision as of 07:44, 20 September 2009
Scaling of the Dirac Delta (Impulse Function)
$ \displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;\;\alpha>0 $
Mini Proof
$ \int_{-\infty}^{\infty}\delta(x)dx = 1 $
Let $ \displaystyle y=\alpha x\;\;\;\;\;\;\;\;\;\;\;\;\;dx=\frac{dy}{\alpha} $
$ \displaystyle\int_{-\infty}^{\infty}\delta(\alpha x)dx=\int_{-\infty}^{\infty}\delta(y)\frac{dy}{\alpha}=\frac{1}{\alpha} $