Line 7: Line 7:
  
 
DFT  
 
DFT  
<math>X(k) = \sum_{n=0}^{N-1}{x(n)e^{-j2pikn/N}} k = 0, 1, 2, ..., N-1</math>
+
<math>X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j2{\pi}kn/N}} k = 0, 1, 2, ..., N-1</math>
  
 
Inverse DFT (IDFT)  
 
Inverse DFT (IDFT)  
<math>x[n] = \frac{1/N}\sum_{k=0}^{N-1}{X(k)e^{j2pikn/N}} n = 0, 1, 2, ..., N-1</math>
+
<math>x[n] = \sum_{k=0}^{N-1}{X(k)e^{j2{\pi}kn/N}} n = 0, 1, 2, ..., N-1</math>
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]

Revision as of 16:41, 18 September 2009


DFT ( Discrete Fourier Transform )

Definition

DFT $ X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j2{\pi}kn/N}} k = 0, 1, 2, ..., N-1 $

Inverse DFT (IDFT) $ x[n] = \sum_{k=0}^{N-1}{X(k)e^{j2{\pi}kn/N}} n = 0, 1, 2, ..., N-1 $ Back to ECE438 course page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood