Line 4: Line 4:
 
*<math>X(w) = \int{x(t)*e^{-jwt} dt }</math>
 
*<math>X(w) = \int{x(t)*e^{-jwt} dt }</math>
 
** <span style="color:green">Careful here: the symbol <math>~_*</math> is for convolution, not multiplication.</span>--[[User:Mboutin|Mboutin]] 20:18, 1 September 2009 (UTC)
 
** <span style="color:green">Careful here: the symbol <math>~_*</math> is for convolution, not multiplication.</span>--[[User:Mboutin|Mboutin]] 20:18, 1 September 2009 (UTC)
*<math>x(t) = (1/2pi)\int{X(w)*e^{jwt} dw }</math>
+
*<math>x(t) = \frac{1}{2\pi}\int{X(w)*e^{jwt} dw }</math>
  
 
Duality Property
 
Duality Property
 
* <math>'''{x(t)\stackrel{\text{CTFT}}{\longrightarrow}X(f)}'''</math>
 
* <math>'''{x(t)\stackrel{\text{CTFT}}{\longrightarrow}X(f)}'''</math>
* <math>'''{X(t)-CTFT->x(-f)}'''</math>
+
* <math>'''{X(t)\stackrel{\text{CTFT}}{\longrightarrow}x(-f)}'''</math>
  
 
Example
 
Example
Line 18: Line 18:
  
 
Cosine and Sine Functions
 
Cosine and Sine Functions
*<math>cos(t) = 0.5 . ( delta(f - f0) + delta(f + f0) )</math>
+
*<math>\cos(t) = 0.5 . ( \delta(f - f0) + \delta(f + f0) )</math>
 
*<math>sin(t) = 0.5 i .( delta(f + f0) - delta(f - f0))</math>
 
*<math>sin(t) = 0.5 i .( delta(f + f0) - delta(f - f0))</math>
  
 
Rept and Comb Functions
 
Rept and Comb Functions
* <math>Rept(x(t)) = x(t) * sum(delta(t-kT))</math>
+
* <math>Rept(x(t)) = x(t) * \sum_{k=-\infty}^\infty(\delta(t-kT))</math>
 
*<math>Comb(x(t)) = x(t) . sum(delta(t-kT))</math>
 
*<math>Comb(x(t)) = x(t) . sum(delta(t-kT))</math>
  

Revision as of 15:21, 1 September 2009

CTFT ( Continuous Time Fourier Transform )

Equations**

  • $ X(w) = \int{x(t)*e^{-jwt} dt } $
    • Careful here: the symbol $ ~_* $ is for convolution, not multiplication.--Mboutin 20:18, 1 September 2009 (UTC)
  • $ x(t) = \frac{1}{2\pi}\int{X(w)*e^{jwt} dw } $

Duality Property

  • $ '''{x(t)\stackrel{\text{CTFT}}{\longrightarrow}X(f)}''' $
  • $ '''{X(t)\stackrel{\text{CTFT}}{\longrightarrow}x(-f)}''' $

Example

  • $ delta(t-t0) ->CTFT-> exp(-j2pi.f.t0) $
  • $ exp(j.2pi.f0t) -> CTFT -> delta(f-f0) $

Another Example:

  • $ rect(t) -> CTFT -> sinc(f) $
  • $ sinc(t) -> CTFT -> (rect(-f) = rect(f)) $

Cosine and Sine Functions

  • $ \cos(t) = 0.5 . ( \delta(f - f0) + \delta(f + f0) ) $
  • $ sin(t) = 0.5 i .( delta(f + f0) - delta(f - f0)) $

Rept and Comb Functions

  • $ Rept(x(t)) = x(t) * \sum_{k=-\infty}^\infty(\delta(t-kT)) $
  • $ Comb(x(t)) = x(t) . sum(delta(t-kT)) $



DTFT ( Discrete Time Fourier Transform )

  • $ X(w) = \sum{x(n)*exp(-jwn) dn } $
  • $ x(t) = (1/2pi)\int{X(w)*exp(jwt) dw } $
  • Note that x[n] is always periodic with 2pi

I will add more later.

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch