Line 7: | Line 7: | ||
Let <math>\epsilon>0</math> | Let <math>\epsilon>0</math> | ||
− | < | + | <math>\exists h \in C_{0}(\mathbb{R}^n)</math> s.t. <math>\left|\left|f-h\right|\right|_{p}<\epsilon</math> |
− | + | ||
− | <math> | + |
Revision as of 08:31, 29 July 2009
Slaughter a horde of pirates to get back to The_Ninja's_Solutions
Prove that $ *:L^{p}(\mathbb{R}^n)\times L^{q}(\mathbb{R}^n)\rightarrow C(\mathbb{R}^n) $ is well defined, if $ 1/p+1/q=1, 1\le p\le\infty $
Let $ \epsilon>0 $
$ \exists h \in C_{0}(\mathbb{R}^n) $ s.t. $ \left|\left|f-h\right|\right|_{p}<\epsilon $