Line 7: Line 7:
 
Let <math>\epsilon>0</math>
 
Let <math>\epsilon>0</math>
  
</math>f*g=</math>
+
<math>\exists h \in C_{0}(\mathbb{R}^n)</math> s.t. <math>\left|\left|f-h\right|\right|_{p}<\epsilon</math>
 
+
<math>= </math>
+

Revision as of 08:31, 29 July 2009

Slaughter a horde of pirates to get back to The_Ninja's_Solutions

Prove that $ *:L^{p}(\mathbb{R}^n)\times L^{q}(\mathbb{R}^n)\rightarrow C(\mathbb{R}^n) $ is well defined, if $ 1/p+1/q=1, 1\le p\le\infty $


Let $ \epsilon>0 $

$ \exists h \in C_{0}(\mathbb{R}^n) $ s.t. $ \left|\left|f-h\right|\right|_{p}<\epsilon $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood