Line 1: Line 1:
<math>j = \sqrt{-1}</math>
+
Euler's identity
<math> e^{j*pi} = 0 </math>
+
 
 +
<math>In    e^{i \pi} + 1 = 0, \,\! sert formula here</math>
 +
 
 +
Euler's formula
 +
 
 +
<math>    e^{ix} = \cos x + i \sin x \,\! </math>
 +
 
 +
<math>   e^{i \pi} = \cos \pi + i \sin \pi.\,\! </math>

Revision as of 19:32, 22 July 2009

Euler's identity

$ In e^{i \pi} + 1 = 0, \,\! sert formula here $

Euler's formula

$ e^{ix} = \cos x + i \sin x \,\! $

$ e^{i \pi} = \cos \pi + i \sin \pi.\,\! $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang