Line 3: Line 3:
 
The period of a periodic CT function of the form <math>e^{j(\omega_0t+\phi)}</math> or <math>cos(\omega_0t+\phi)</math> is easy to find. This is due to the fact that every different value for the fundamental frequency <math>\omega_0</math> corresponds to a unique function with period <math>T=\frac{2\pi}{\omega_0}</math>.
 
The period of a periodic CT function of the form <math>e^{j(\omega_0t+\phi)}</math> or <math>cos(\omega_0t+\phi)</math> is easy to find. This is due to the fact that every different value for the fundamental frequency <math>\omega_0</math> corresponds to a unique function with period <math>T=\frac{2\pi}{\omega_0}</math>.
  
--[[User:Asiembid|Asiembid]] 10:09, 22 July 2009 (UTC)
+
--[[User:Asiembid|Adam Siembida (asiembid)]] 10:09, 22 July 2009 (UTC)

Revision as of 05:09, 22 July 2009

Periodicity

The period of a periodic CT function of the form $ e^{j(\omega_0t+\phi)} $ or $ cos(\omega_0t+\phi) $ is easy to find. This is due to the fact that every different value for the fundamental frequency $ \omega_0 $ corresponds to a unique function with period $ T=\frac{2\pi}{\omega_0} $.

--Adam Siembida (asiembid) 10:09, 22 July 2009 (UTC)

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett