(New page: <math>\text{Suppose} f, f' \in L^{1}(\mathbb{R}), f \in \mbox{AC}(I) \text{ for all bounded intervals } I.</math> <math>\text{Show that }\int_{\mathbb{R}}{f'} = 0.</math>)
 
Line 1: Line 1:
 +
[[MA_598R_pweigel_Summer_2009_Lecture_6]]
 +
 
<math>\text{Suppose} f, f' \in L^{1}(\mathbb{R}), f \in \mbox{AC}(I) \text{ for all bounded intervals } I.</math>
 
<math>\text{Suppose} f, f' \in L^{1}(\mathbb{R}), f \in \mbox{AC}(I) \text{ for all bounded intervals } I.</math>
  
 
<math>\text{Show that }\int_{\mathbb{R}}{f'} = 0.</math>
 
<math>\text{Show that }\int_{\mathbb{R}}{f'} = 0.</math>

Revision as of 03:26, 22 July 2009

MA_598R_pweigel_Summer_2009_Lecture_6

$ \text{Suppose} f, f' \in L^{1}(\mathbb{R}), f \in \mbox{AC}(I) \text{ for all bounded intervals } I. $

$ \text{Show that }\int_{\mathbb{R}}{f'} = 0. $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett