(New page: <math>\text{Show: Given r } \in [-1,1] \text{, show there exist elements in the Cantor set } x,y \text{ such that } x-y=r.</math> <math>\text{Proof: Let } \mathcal{C} \text{ denote the Can...)
 
Line 1: Line 1:
 +
[[Category:MA598RSummer2009pweigel]]
 +
[[Category:MA598]]
 +
[[Category:math]]
 +
[[Category:problem solving]]
 +
 +
=Solution for HW2.17, MA598, Weigel, Summer 2009=
 +
 
<math>\text{Show: Given r } \in [-1,1] \text{, show there exist elements in the Cantor set } x,y \text{ such that } x-y=r.</math>
 
<math>\text{Show: Given r } \in [-1,1] \text{, show there exist elements in the Cantor set } x,y \text{ such that } x-y=r.</math>
 
<math>\text{Proof: Let } \mathcal{C} \text{ denote the Cantor set.  Define } f: </math> <math> \mathcal{C} \times \mathcal{C} \rightarrow [0,1] \text{ by } (x,y) </math> <math> \mapsto \frac{x+y}{2}. </math>  
 
<math>\text{Proof: Let } \mathcal{C} \text{ denote the Cantor set.  Define } f: </math> <math> \mathcal{C} \times \mathcal{C} \rightarrow [0,1] \text{ by } (x,y) </math> <math> \mapsto \frac{x+y}{2}. </math>  
Line 4: Line 11:
 
<math>\exists x, y \in \mathcal{C} \text{ s.t. } r+1 = x+y \Rightarrow r=x-(1-y).  </math>
 
<math>\exists x, y \in \mathcal{C} \text{ s.t. } r+1 = x+y \Rightarrow r=x-(1-y).  </math>
 
<math>\text{  Since } 1-y \in \mathcal{C} \text{ by symmetry, } \square. </math>
 
<math>\text{  Since } 1-y \in \mathcal{C} \text{ by symmetry, } \square. </math>
 +
----
 +
----
 +
[[MA_598R_pweigel_Summer_2009_Lecture_2|Back to Assignment 2, MA598, Summer 2009, Weigel]]
 +
 +
[[MA598R_%28WeigelSummer2009%29|Back to MA598R Summer 2009]]

Revision as of 04:09, 11 June 2013


Solution for HW2.17, MA598, Weigel, Summer 2009

$ \text{Show: Given r } \in [-1,1] \text{, show there exist elements in the Cantor set } x,y \text{ such that } x-y=r. $ $ \text{Proof: Let } \mathcal{C} \text{ denote the Cantor set. Define } f: $ $ \mathcal{C} \times \mathcal{C} \rightarrow [0,1] \text{ by } (x,y) $ $ \mapsto \frac{x+y}{2}. $ $ \text{ Now f is clearly onto by examining the ternary representation of an element of } [0,1]. \text{ Given } r \in [-1,1], \frac{r+1}{2} \in [0,1] \Rightarrow $ $ \exists x, y \in \mathcal{C} \text{ s.t. } r+1 = x+y \Rightarrow r=x-(1-y). $ $ \text{ Since } 1-y \in \mathcal{C} \text{ by symmetry, } \square. $



Back to Assignment 2, MA598, Summer 2009, Weigel

Back to MA598R Summer 2009

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal