Line 20: Line 20:
  
 
<math>\therefore</math> If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is always ''zero'' <math>\square</math>
 
<math>\therefore</math> If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is always ''zero'' <math>\square</math>
 +
 +
----
  
 
-Adam Siembida
 
-Adam Siembida

Revision as of 09:02, 17 June 2009

Proof

If $ E_\infty $ is finite, then $ P_\infty $ is always zero


$ P_\infty\equiv\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^T|x(t)|^2dt $

$ P_\infty\equiv(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt) $

Because $ E_\infty\equiv\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt $, it follows that by substitution

$ P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*E_\infty $

$ P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}E_\infty) $

$ P_\infty=\lim_{T\to\infty}\frac{E_\infty}{2T} $

This limit will always evaluate to zero as long as $ E_\infty $ is finite.

$ \therefore $ If $ E_\infty $ is finite, then $ P_\infty $ is always zero $ \square $


-Adam Siembida

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood