Line 1: Line 1:
 +
[[Category:energy]]
 +
[[Category:signal]]
 +
[[Category:ECE]]
 +
[[Category:ECE301]]
 +
[[Category:practice problem]]
 +
 +
=Question=
 +
Compute the energy and the average power of the following signal:
 +
 
<math>x(t)=\sqrt{t}</math>
 
<math>x(t)=\sqrt{t}</math>
 
----
 
----
 +
==Answer 1==
 
<math>E\infty= \int_{-\infty}^{\infty}|x(t)|^2dt</math>
 
<math>E\infty= \int_{-\infty}^{\infty}|x(t)|^2dt</math>
  
Line 15: Line 25:
  
 
lim T<math>\to</math><math>\infty</math> = <math>\infty</math> = P<math>\infty</math>
 
lim T<math>\to</math><math>\infty</math> = <math>\infty</math> = P<math>\infty</math>
 +
*<span style="color:green"> Be careful! The stuff inside the integral should always be positive. You are integrating "t", which is sometimes positive and sometimes negative. So there must be a mistake somewhere. </span>
 +
*<span style="color:blue"> The key is to take the '''norm''' of the signal squared. Here the signal is <math>\sqrt{t}</math>, so taking the norm of the signal squared gives <math>|t|</math>. </span>
 +
----
 +
==Answer 2==
 +
*
 +
----
 +
[[Signal_energy_CT|Back to CT signal energy page]]

Revision as of 12:52, 24 February 2015


Question

Compute the energy and the average power of the following signal:

$ x(t)=\sqrt{t} $


Answer 1

$ E\infty= \int_{-\infty}^{\infty}|x(t)|^2dt $

E$ \infty $ = $ \int_{-\infty}^{\infty} tdt $


E$ \infty $ = $ \frac{1}{2} t^2 $ evaluated from -$ \infty $ to +$ \infty $ = $ \infty $


P$ \infty $ = lim T$ \to $$ \infty $ $ \frac{1}{2T} $ $ \int_{-T}^{T}\ tdt $

$ \frac{1}{2T} (.5t^2)|_{-T}^{T} = \frac{T}{4} $

lim T$ \to $$ \infty $ = $ \infty $ = P$ \infty $

  • Be careful! The stuff inside the integral should always be positive. You are integrating "t", which is sometimes positive and sometimes negative. So there must be a mistake somewhere.
  • The key is to take the norm of the signal squared. Here the signal is $ \sqrt{t} $, so taking the norm of the signal squared gives $ |t| $.

Answer 2


Back to CT signal energy page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang