(New page: Total Energy: <math>E_{\infty} = \int^{\infty}_{-\infty} |x(t)|^2 dt = \lim_{T\to\infty} \int^T_{-T} |x(t)|^2 dt</math> Average Power: <math>P_{\infty} = \lim_{T\to\infty} \frac{1}{2T} ...) |
|||
Line 14: | Line 14: | ||
-Bill Snow | -Bill Snow | ||
+ | |||
+ | [https://kiwi.ecn.purdue.edu/rhea/index.php/Definitions Go Back] |
Latest revision as of 07:39, 16 June 2009
Total Energy:
$ E_{\infty} = \int^{\infty}_{-\infty} |x(t)|^2 dt = \lim_{T\to\infty} \int^T_{-T} |x(t)|^2 dt $
Average Power:
$ P_{\infty} = \lim_{T\to\infty} \frac{1}{2T} \int^T_{-T} |x(t)|^2 dt $
Therefore if
$ E_{\infty} < \infty $,
$ P_{\infty} = \lim_{T\to\infty} \frac{E_{\infty}}{2T} = 0 $
-Bill Snow