Line 1: Line 1:
a)<math>|h(x)| \leq (\int |f(x-y)|^p dy)^(1/p)(\int |g(y)|^q dy)^(1/q) = (\int |f(z)|^p dz)^(1/p)(\int |g(y)|^q dy)^(1/q) \leq ||f||_{p}||g||_{q}</math>
+
a)<math>|h(x)| \leq (\int |f(x-y)|^p dy)^{1/p}(\int |g(y)|^q dy)^{1/q} = (\int |f(z)|^p dz)^{1/p}(\int |g(y)|^q dy)^{1/q} \leq ||f||_{p}||g||_{q}</math>

Revision as of 14:13, 22 July 2008

a)$ |h(x)| \leq (\int |f(x-y)|^p dy)^{1/p}(\int |g(y)|^q dy)^{1/q} = (\int |f(z)|^p dz)^{1/p}(\int |g(y)|^q dy)^{1/q} \leq ||f||_{p}||g||_{q} $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett