(New page: We recall that <math>V_0^x</math> is monotone increasing, thus f is monotone decreasing, and <math>V_0^x = f(0)-f(x)</math>. Then we have <math>f(0)-f(x) = (f(0)-f(x))^{\frac{1}{2}} \Ri...)
 
 
Line 7: Line 7:
 
\Rightarrow (f(0)-f(x))^2 = (f(0)-f(x)) </math>
 
\Rightarrow (f(0)-f(x))^2 = (f(0)-f(x)) </math>
  
Applying the quadratic formula yields <math>f(x) = f(0)</math> or <math>f(x) = f(0)-1</math>, with two compatible functions:
+
Factoring yields <math>f(x) = f(0)</math> or <math>f(x) = f(0)-1</math>, with two compatible functions:
  
 
<math>f_1(x) = \frac{1}{3}</math>,
 
<math>f_1(x) = \frac{1}{3}</math>,

Latest revision as of 12:44, 22 July 2008

We recall that $ V_0^x $ is monotone increasing, thus f is monotone decreasing, and $ V_0^x = f(0)-f(x) $.

Then we have

$ f(0)-f(x) = (f(0)-f(x))^{\frac{1}{2}} \Rightarrow (f(0)-f(x))^2 = (f(0)-f(x)) $

Factoring yields $ f(x) = f(0) $ or $ f(x) = f(0)-1 $, with two compatible functions:

$ f_1(x) = \frac{1}{3} $,


$ f_2(x) = \frac{1}{3}, \ 0<x\leq 1, f_2(0) = \frac{4}{3} $

-pw

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal