(New page: Lemma: If <math> f </math> is as described then <math> f(x)=0 \ \forall \ x \in [0, \frac{1}{2c}]</math>. Pf: Suppose <math>\int_0^\frac{1}{2c} f(t) dt \neq 0</math>. Let <math>\epsil...)
 
Line 18: Line 18:
  
 
<math>\Rightarrow</math> Lemma.
 
<math>\Rightarrow</math> Lemma.
 +
 +
So now here's the plan:  Take an f that satisfies the hypotheses.  If there's some <math>\alpha</math> such that <math>f(\alpha) \neq 0</math>.
 +
we can shift it over and apply the lemma to the shifted function to get a contradiction.
 +
 +
Here are the details:

Revision as of 20:02, 21 July 2008

Lemma: If $ f $ is as described then $ f(x)=0 \ \forall \ x \in [0, \frac{1}{2c}] $.

Pf: Suppose $ \int_0^\frac{1}{2c} f(t) dt \neq 0 $.

Let $ \epsilon=\frac{c}{2} \int_0^\frac{1}{2c} f(t) dt $

$ f(x) $ is bounded by $ c \| f \|_1 $ so we can let $ M=sup_{x \in [0 \frac{1}{2c}]} f(x). $

Pick $ b \in [0,\frac{1}{2c}] $ such that $ f(b) + \epsilon > M $.

$ \int_0^\frac{1}{2c} f(t) dt \leq \frac{f(b) + \epsilon}{2c} \leq \frac{c}{2c} \int_0^b f(t) dt + \frac{\epsilon}{2c} \leq \frac{1}{2} \int_0^\frac{1}{2c} f(t) dt + \frac{1}{4} \int_0^\frac{1}{2c} f(t) dt $ contradiction

So $ \int_0^\frac{1}{2c} f(t) dt = 0 $.

So $ \forall \ x \in [0 \frac{1}{2c}], f(x) \leq c \int_0^x f(t) dt \leq c\int_0^\frac{1}{2c} f(t) dt = 0 $.

$ \Rightarrow $ Lemma.

So now here's the plan: Take an f that satisfies the hypotheses. If there's some $ \alpha $ such that $ f(\alpha) \neq 0 $. we can shift it over and apply the lemma to the shifted function to get a contradiction.

Here are the details:

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn