Line 1: Line 1:
 
 
'''a)'''
 
'''a)'''
 
Notice that <math>\mu(\{|f|>0\})>0</math>, so we have
 
Notice that <math>\mu(\{|f|>0\})>0</math>, so we have
Line 16: Line 15:
  
 
and we have the identity.
 
and we have the identity.
 +
 +
Notice that it is true for true for finite measure space.
  
 
'''b)'''
 
'''b)'''
 +
<math>\lim_{n\to\infty}\frac{\int_{X}|f|^{n+1}}{\int_{X}|f|^{n}}</math>

Revision as of 13:46, 11 July 2008

a) Notice that $ \mu(\{|f|>0\})>0 $, so we have

$ (\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n} $

Taking the limit of both side as $ n $ go to infinity, we get

$ \lim_{n\to \infty}||f||_{n} \leq ||f||_{\infty} $

Let $ M<||f||_{\infty} $, and $ E=\{|f|>M\} $, then

$ \lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n} \geq (\mu(E)M^{n})^{1/n} = M $

So, $ (\int_{X}|f|^{n})^{1/n} \geq (\mu(X)||f||_{\infty})^{1/n} $

and we have the identity.

Notice that it is true for true for finite measure space.

b) $ \lim_{n\to\infty}\frac{\int_{X}|f|^{n+1}}{\int_{X}|f|^{n}} $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman